Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMuch of the dramatic growth in research on topological materials has focused on topologically protected surface states. While the domain walls of topological materials such as Weyl semimetals with broken inversion or time-reversal symmetry can provide a hunting ground for exploring topological interfacial states, such investigations have received little attention to date. Here, utilizing in-situ cryogenic transmission electron microscopy combined with first-principles calculations, we discover intriguing domain-wall structures in MoTe2, both between polar variants of the low-temperature(T) Weyl phase, and between this and the high-T higher-order topological phase. We demonstrate how polar domain walls can be manipulated with electron beams and show that phase domain walls tend to form superlattice-like structures along the c axis. Scanning tunneling microscopy indicates a possible signature of a conducting hinge state at phase domain walls. Our results open avenues for investigating topological interfacial states and unveiling multifunctional aspects of domain walls in topological materials.

Bibliography

Huang, F.-T., Joon Lim, S., Singh, S., Kim, J., Zhang, L., Kim, J.-W., Chu, M.-W., Rabe, K. M., Vanderbilt, D., & Cheong, S.-W. (2019). Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nature Communications, 10(1).

Authors 10
  1. Fei-Ting Huang (first)
  2. Seong Joon Lim (additional)
  3. Sobhit Singh (additional)
  4. Jinwoong Kim (additional)
  5. Lunyong Zhang (additional)
  6. Jae-Wook Kim (additional)
  7. Ming-Wen Chu (additional)
  8. Karin M. Rabe (additional)
  9. David Vanderbilt (additional)
  10. Sang-Wook Cheong (additional)
References 59 Referenced 63
  1. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). (10.1038/nature23268) / Nature by B Bradlyn (2017)
  2. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017). (10.1146/annurev-conmatphys-031016-025458) / Annu. Rev. Condens. Matter Phys. by B Yan (2017)
  3. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). (10.1103/RevModPhys.90.015001) / Rev. Mod. Phys. by NP Armitage (2018)
  4. Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017). (10.1146/annurev-conmatphys-031016-025225) / Annu. Rev. Condens. Matter Phys. by MZ Hasan (2017)
  5. Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012). (10.1103/PhysRevB.85.165110) / Phys. Rev. B by AA Zyuzin (2012)
  6. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). (10.1126/science.aaa9297) / Science by S-Y Xu (2015)
  7. Chen, A. & Franz, M. Superconducting proximity effect and Majorana flat bands at the surface of a Weyl semimetal. Phys. Rev. B 93, 201105 (2016). (10.1103/PhysRevB.93.201105) / Phys. Rev. B by A Chen (2016)
  8. O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016). (10.1103/PhysRevLett.116.236401) / Phys. Rev. Lett. by TE O’Brien (2016)
  9. Grushin, A. G. & Bardarson, J. H. How to make devices with Weyl materials. Phys. Today 10, 63 (2017). / Phys. Today by AG Grushin (2017)
  10. Li, X.-S., Zhang, S.-F., Sun, X.-R. & Gong, W.-J. Double Andreev reflections and double electron transmissions in a normal-superconductor-normal junction based on type-II Weyl semimetal. New J. Phys. 20, 103005 (2018). (10.1088/1367-2630/aae280) / New J. Phys. by X-S Li (2018)
  11. Edmonds, M. T. et al. Stability and surface reconstruction of topological insulator Bi2Se3 on exposure to atmosphere. J. Phys. Chem. C. 118, 20413–20419 (2014). (10.1021/jp506089b) / J. Phys. Chem. C. by MT Edmonds (2014)
  12. Lee, C.-H. et al. Tungsten ditelluride: a layered semimetal. Sci. Rep. 5, 10013 (2015). (10.1038/srep10013) / Sci. Rep. by C-H Lee (2015)
  13. Butler, C. J. et al. Mapping polarization induced surface band bending on the Rashba semiconductor BiTeI. Nat. Commun. 5, 4066 (2014). (10.1038/ncomms5066) / Nat. Commun. by CJ Butler (2014)
  14. Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 9, 3401 (2018). (10.1038/s41467-018-05672-w) / Nat. Commun. by MM Ugeda (2018)
  15. Yin, L.-J., Jiang, H., Qiao, J.-B. & He, L. Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun. 7, 11760 (2016). (10.1038/ncomms11760) / Nat. Commun. by L-J Yin (2016)
  16. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015). (10.1103/PhysRevB.92.161107) / Phys. Rev. B by Y Sun (2015)
  17. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017). (10.1038/ncomms13973) / Nat. Commun. by J Jiang (2017)
  18. Autès, G., Gresch, D., Troyer, M., Soluyanov, A. A. & Yazyev, O. V. Robust type-II Weyl semimetal phase in transition metal diphosphides XP2 (X=Mo, W). Phys. Rev. Lett. 117, 066402 (2016). (10.1103/PhysRevLett.117.066402) / Phys. Rev. Lett. by G Autès (2016)
  19. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017). (10.1038/nphys3969) / Nat. Phys. by L Wu (2017)
  20. Xu, S.-Y. et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017). (10.1126/sciadv.1603266) / Sci. Adv. by S-Y Xu (2017)
  21. Chang, G. et al. Magnetic and noncentrosymmetric Weyl fermion semimetals in the RAlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041104 (2018). (10.1103/PhysRevB.97.041104) / Phys. Rev. B by G Chang (2018)
  22. Benedek, N. A. & Birol, T. ‘Ferroelectric’ metals reexamined: fundamental mechanisms and design considerations for new materials. J. Mater. Chem. C. 4, 4000–4015 (2016). (10.1039/C5TC03856A) / J. Mater. Chem. C. by NA Benedek (2016)
  23. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). (10.1038/nmat3754) / Nat. Mater. by Y Shi (2013)
  24. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016). (10.1038/nature17628) / Nature by TH Kim (2016)
  25. Lei, S. et al. Observation of quasi-two-dimensional polar domains and ferroelastic switching in a metal, Ca3Ru2O7. Nano Lett. 18, 3088–3095 (2018). (10.1021/acs.nanolett.8b00633) / Nano Lett. by S Lei (2018)
  26. Stone, G. et al. Atomic and electronic structure of domains walls in a polar metal. Phys. Rev. B 99, 014105 (2019). (10.1103/PhysRevB.99.014105) / Phys. Rev. B by G Stone (2019)
  27. Nukala, P. et al. Inverting polar domains via electrical pulsing in metallic germanium telluride. Nat. Commun. 8, 15033 (2017). (10.1038/ncomms15033) / Nat. Commun. by P Nukala (2017)
  28. Dwivedi, V. Fermi arc reconstruction at junctions between Weyl semimetals. Phys. Rev. B 97, 064201 (2018). (10.1103/PhysRevB.97.064201) / Phys. Rev. B by V Dwivedi (2018)
  29. Iaia, D. et al. Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2. npj Quant. Mater. 3, 38 (2018). (10.1038/s41535-018-0112-5) / npj Quant. Mater. by D Iaia (2018)
  30. Sakano, M. et al. Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoTe2. Phys. Rev. B 95, 121101 (2017). (10.1103/PhysRevB.95.121101) / Phys. Rev. B by M Sakano (2017)
  31. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019). (10.1038/s41586-018-0809-4) / Nature by EJ Sie (2019)
  32. Yang, J. et al. Elastic and electronic tuning of magnetoresistance in MoTe2. Sci. Adv. 3, eaao4949 (2017). (10.1126/sciadv.aao4949) / Sci. Adv. by J Yang (2017)
  33. Heikes, C. et al. Mechanical control of crystal symmetry and superconductivity in Weyl semimetal MoTe2. Phys. Rev. Mater. 2, 074202 (2018). (10.1103/PhysRevMaterials.2.074202) / Phys. Rev. Mater. by C Heikes (2018)
  34. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016). (10.1038/ncomms11038) / Nat. Commun. by Y Qi (2016)
  35. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019). (10.1038/s41567-019-0418-7) / Nat. Phys. by F Tang (2019)
  36. Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metal dichalcogenides XTe2 (X=Mo,W). Preprint at http://arxiv.org/abs/1806.11116 (2018).
  37. Ezawa, M. Second-order topological insulators and loop-nodal semimetals in transition metal dichalcogenides XTe2 (X=Mo, W). Sci. Rep. 9, 5286 (2019). (10.1038/s41598-019-41746-5) / Sci. Rep. by M Ezawa (2019)
  38. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019). (10.1038/s41467-019-09669-x) / Nat. Commun. by S Yuan (2019)
  39. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). (10.1038/s41586-018-0336-3) / Nature by Z Fei (2018)
  40. Wang, Z. et al. MoTe2: A type-II Weyl topological metal. Phys. Rev. Lett. 117, 551 (2016). / Phys. Rev. Lett. by Z Wang (2016)
  41. Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016). / Phys. Rev. X by A Tamai (2016)
  42. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015). (10.1038/nphys3314) / Nat. Phys. by DH Keum (2015)
  43. Yan, X.-J. et al. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2. npj Quant. Mater. 2, 31 (2017). (10.1038/s41535-017-0031-x) / npj Quant. Mater. by X-J Yan (2017)
  44. Sakai, H. et al. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2. Sci. Adv. 2, e1601378 (2016). (10.1126/sciadv.1601378) / Sci. Adv. by H Sakai (2016)
  45. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017). (10.1038/nature24043) / Nature by Y Wang (2017)
  46. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015). (10.1126/science.aab3175) / Science by S Cho (2015)
  47. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transition in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017). (10.1038/nphys4188) / Nat. Phys. by H Yang (2017)
  48. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014). (10.1038/nnano.2014.64) / Nat. Nanotechnol. by Y-C Lin (2014)
  49. Hart, J. L. et al. Electron-beam-induced ferroelectric domain behavior in the transmission electron microscope: Toward deterministic domain patterning. Phys. Rev. B 94, 174104 (2016). (10.1103/PhysRevB.94.174104) / Phys. Rev. B by JL Hart (2016)
  50. Chen, Z., Wang, X., Ringer, S. P. & Liao, X. Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution. Phys. Rev. Lett. 117, 027601 (2016). (10.1103/PhysRevLett.117.027601) / Phys. Rev. Lett. by Z Chen (2016)
  51. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  52. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  53. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). (10.1103/PhysRevLett.100.136406) / Phys. Rev. Lett. by JP Perdew (2008)
  54. Xu, N. et al. Evidence of a coulomb-interaction-induced Lifshitz transition and robust hybrid Weyl semimetal in Td-MoTe2. Phys. Rev. Lett. 121, 136401 (2018). (10.1103/PhysRevLett.121.136401) / Phys. Rev. Lett. by N Xu (2018)
  55. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008). (10.1103/PhysRevB.78.134106) / Phys. Rev. B by A Togo (2008)
  56. Clarke, R., Marseglia, E. & Hughes, H. P. A low-temperature structural phase transition in β-MoTe2. Philos. Mag. B 38, 121–126 (1978). (10.1080/13642817808245670) / Philos. Mag. B by R Clarke (1978)
  57. Stokes, H. T. & Hatch, D. M. Isotropy Subgroups of the 230 Crystallographic Space Groups (World Scientific, Singapore, 1988). (10.1142/0751)
  58. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007). (10.1103/PhysRevB.76.045302) / Phys. Rev. B by L Fu (2007)
  59. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918 (2018). (10.1038/s41567-018-0224-7) / Nat. Phys. by F Schindler (2018)
Dates
Type When
Created 5 years, 11 months ago (Sept. 16, 2019, 6:05 a.m.)
Deposited 2 years, 8 months ago (Dec. 16, 2022, 8:09 p.m.)
Indexed 3 weeks, 1 day ago (Aug. 6, 2025, 9:18 a.m.)
Issued 5 years, 11 months ago (Sept. 16, 2019)
Published 5 years, 11 months ago (Sept. 16, 2019)
Published Online 5 years, 11 months ago (Sept. 16, 2019)
Funders 2
  1. Gordon and Betty Moore Foundation 10.13039/100000936

    Region: Americas

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Moore Foundation
    2. GORDON E. & BETTY I. MOORE FOUNDATION
    3. GORDON E. AND BETTY I. MOORE FOUNDATION
    4. Gordon & Betty Moore Foundation
    5. GBMF
    Awards1
    1. GBMF4413
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1629059

@article{Huang_2019, title={Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-11949-5}, DOI={10.1038/s41467-019-11949-5}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Huang, Fei-Ting and Joon Lim, Seong and Singh, Sobhit and Kim, Jinwoong and Zhang, Lunyong and Kim, Jae-Wook and Chu, Ming-Wen and Rabe, Karin M. and Vanderbilt, David and Cheong, Sang-Wook}, year={2019}, month=sep }