10.1038/s41467-019-11612-z
Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMolecular crystals can be bent elastically by expansion or plastically by delamination into slabs that glide along slip planes. Here we report that upon bending, terephthalic acid crystals can undergo a mechanically induced phase transition without delamination and their overall crystal integrity is retained. Such plastically bent crystals act as bimorphs and their phase uniformity can be recovered thermally by taking the crystal over the phase transition temperature. This recovers the original straight shape and the crystal can be bent by a reverse thermal treatment, resulting in shape memory effects akin of those observed with some metal alloys and polymers. We anticipate that similar memory and restorative effects are common for other molecular crystals having metastable polymorphs. The results demonstrate the advantage of using intermolecular interactions to accomplish mechanically adaptive properties with organic solids that bridge the gap between mesophasic and inorganic materials in the materials property space.

Bibliography

Ahmed, E., Karothu, D. P., Warren, M., & Naumov, P. (2019). Shape-memory effects in molecular crystals. Nature Communications, 10(1).

Authors 4
  1. Ejaz Ahmed (first)
  2. Durga Prasad Karothu (additional)
  3. Mark Warren (additional)
  4. Panče Naumov (additional)
References 57 Referenced 104
  1. Nath, N. K. et al. Model for photoinduced bending of slender molecular crystals. J. Am. Chem. Soc. 136, 2757–2766 (2014). (10.1021/ja4101497) / J. Am. Chem. Soc. by NK Nath (2014)
  2. Koshima, H., Ojima, N. & Uchimoto, H. Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 131, 6890–6891 (2009). (10.1021/ja8098596) / J. Am. Chem. Soc. by H Koshima (2009)
  3. Shima, T. et al. Thermally driven polymorphic transition prompting a naked-eye-detectable bending and straightening motion of single crystals. Angew. Chem. Int. Ed. 53, 7173–7178 (2014). (10.1002/anie.201402560) / Angew. Chem. Int. Ed. by T Shima (2014)
  4. Karothu, D. P., Weston, J., Desta, I. T. & Naumov, P. Shape-memory and self-healing effects in mechanosalient molecular crystals. J. Am. Chem. Soc. 138, 13298–13306 (2016). (10.1021/jacs.6b07406) / J. Am. Chem. Soc. by DP Karothu (2016)
  5. Guo, S. et al. Photoinduced bending of self-assembled azobenzene–siloxane hybrid. J. Am. Chem. Soc. 137, 15434–15440 (2015). (10.1021/jacs.5b06172) / J. Am. Chem. Soc. by S Guo (2015)
  6. Bushuyev, O. S., Tomberg, A., Friščić, T. & Barrett, C. J. Shaping crystals with light: crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J. Am. Chem. Soc. 135, 12556–12559 (2013). (10.1021/ja4063019) / J. Am. Chem. Soc. by OS Bushuyev (2013)
  7. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007). (10.1038/nature05669) / Nature by S Kobatake (2007)
  8. Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 10, 65–69 (2018). (10.1038/nchem.2848) / Nat. Chem. by A Worthy (2018)
  9. Uchida, K. et al. Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem. Commun. 326–328 (2008). (10.1039/B715251E)
  10. Thomas, S. P. et al. The elusive structural origin of plastic bending in dimethyl sulfone crystals with quasi-isotropic crystal packing. Angew. Chem. Int. Ed. 56, 8468–8472 (2017). (10.1002/anie.201701972) / Angew. Chem. Int. Ed. by SP Thomas (2017)
  11. Etter, M. C. & Siedle, A. R. Solid-state rearrangement of (phenylazophenyl)palladium hexafluoroacetylacetonate. J. Am. Chem. Soc. 105, 641–643 (1983). (10.1021/ja00341a065) / J. Am. Chem. Soc. by MC Etter (1983)
  12. Commins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. Crystals on the move: mechanical effects in dynamic solids. Chem. Commun. 52, 13941–13954 (2016). (10.1039/C6CC06235K) / Chem. Commun. by P Commins (2016)
  13. Panda, M. K., Runčevski, T., Husain, A., Dinnebier, R. E. & Naumov, P. Perpetually self-propelling chiral single crystals. J. Am. Chem. Soc. 137, 1895–1902 (2015). (10.1021/ja5111927) / J. Am. Chem. Soc. by MK Panda (2015)
  14. Lieberman, H. F., Davey, R. J. & Newsham, D. M. T. Br···Br and Br···H interactions in action: polymorphism, hopping, and twinning in 1,2,4,5-tetrabromobenzene. Chem. Mater. 12, 490–494 (2000). (10.1021/cm991123p) / Chem. Mater. by HF Lieberman (2000)
  15. Sahoo, S. C. et al. Kinematic and mechanical profile of the self-actuation of thermosalient crystal twins of 1,2,4,5-tetrabromobenzene: a molecular crystalline analogue of a bimetallic strip. J. Am. Chem. Soc. 135, 13843–13850 (2013). (10.1021/ja4056323) / J. Am. Chem. Soc. by SC Sahoo (2013)
  16. Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. Thermally induced and photoinduced mechanical effects in molecular single crystals—a revival. CrystEngComm 16, 1850–1858 (2014). (10.1039/c3ce41313f) / CrystEngComm by NK Nath (2014)
  17. Lusi, M. & Bernstein, J. On the propulsion mechanism of “jumping” crystals. Chem. Commun. 49, 9293–9295 (2013). (10.1039/c3cc45646c) / Chem. Commun. by M Lusi (2013)
  18. Tamboli, M. I., Karothu, D. P., Shashidhar, M. S., Gonnade, R. G. & Naumov, P. Effect of crystal packing on the thermosalient effect of the pincer‐type diester naphthalene‐2,3‐diyl‐bis(4‐fluorobenzoate): a new class II thermosalient solid. Chem. Eur. J. 24, 4133–4139 (2018). (10.1002/chem.201705586) / Chem. Eur. J. by MI Tamboli (2018)
  19. Panda, M. K. et al. Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite. Nat. Commun. 5, 4811 (2014). (10.1038/ncomms5811) / Nat. Commun. by MK Panda (2014)
  20. Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011). (10.1021/ja201925p) / J. Am. Chem. Soc. by L Zhu (2011)
  21. Shtukenberg, A. G., Freudenthal, J. & Kahr, B. Reversible twisting during helical hippuric acid crystal growth. J. Am. Chem. Soc. 132, 9341–9349 (2010). (10.1021/ja101491n) / J. Am. Chem. Soc. by AG Shtukenberg (2010)
  22. Kitagawa, D., Nishi, H. & Kobatake, S. Photoinduced twisting of a photochromic diarylethene crystal. Angew. Chem. Int. Ed. 52, 9320–9322 (2013). (10.1002/anie.201304670) / Angew. Chem. Int. Ed. by D Kitagawa (2013)
  23. Kim, T., Zhu, L., Mueller, L. J. & Bardeen, C. J. Mechanism of photoinduced bending and twisting in crystalline microneedles and microribbons composed of 9-methylanthracene. J. Am. Chem. Soc. 136, 6617–6625 (2014). (10.1021/ja412216z) / J. Am. Chem. Soc. by T Kim (2014)
  24. Kim, T., Al-Muhanna, M. K., Al-Suwaidan, S. D., Al-Kaysi, R. O. & Bardeen, C. J. Photoinduced curling of organic molecular crystal nanowires. Angew. Chem. Int. Ed. 52, 6889–6893 (2013). (10.1002/anie.201302323) / Angew. Chem. Int. Ed. by T Kim (2013)
  25. Liu, G. et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem. Int. Ed. 56, 198–202 (2017). (10.1002/anie.201609667) / Angew. Chem. Int. Ed. by G Liu (2017)
  26. Commins, P., Hara, H. & Naumov, P. Self-healing molecular crystals. Angew. Chem. Int. Ed. 55, 13028–13032 (2016). (10.1002/anie.201606003) / Angew. Chem. Int. Ed. by P Commins (2016)
  27. Chung, H. et al. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 9, 278 (2018). (10.1038/s41467-017-02607-9) / Nat. Commun. by H Chung (2018)
  28. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014). (10.1021/cr500249p) / Chem. Rev. by M Irie (2014)
  29. Wang, M. S., Xu, G., Zhang, Z. J. & Guo, G. C. Inorganic–organic hybrid photochromic materials. Chem. Commun. 46, 361–376 (2010). (10.1039/B917890B) / Chem. Commun. by MS Wang (2010)
  30. Kitagawa, D. & Kobatake, S. Crystal thickness dependence of the photoinduced crystal bending of 1-(5-methyl-2-(4-(p-vinylbenzoyloxymethyl)phenyl)-4-thiazolyl)-2-(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene. Photochem. Photobiol. Sci. 13, 764–769 (2014). (10.1039/c3pp50417d) / Photochem. Photobiol. Sci. by D Kitagawa (2014)
  31. Chizhik, S., Sidelnikov, A., Zakharov, B., Naumov, P. & Boldyreva, E. Quantification of photoinduced bending of dynamic molecular crystals: from macroscopic strain to kinetic constants and activation energies. Chem. Sci. 9, 2319–2335 (2018). (10.1039/C7SC04863G) / Chem. Sci. by S Chizhik (2018)
  32. Hirano, A., Hashimoto, T., Kitagawa, D., Kono, K. & Kobatake, S. Dependence of photoinduced bending behavior of diarylethene crystals on ultraviolet irradiation power. Cryst. Growth Des. 17, 4819–4825 (2017). (10.1021/acs.cgd.7b00755) / Cryst. Growth Des. by A Hirano (2017)
  33. Takamizawa, S. & Miyamoto, Y. Superelastic organic crystals. Angew. Chem. Int. Ed. 53, 6970–6973 (2014). (10.1002/anie.201311014) / Angew. Chem. Int. Ed. by S Takamizawa (2014)
  34. Takamizawa, S. & Takasaki, Y. Shape-memory effect in an organosuperelastic crystal. Chem. Sci. 7, 1527–1534 (2016). (10.1039/C5SC04057D) / Chem. Sci. by S Takamizawa (2016)
  35. Saha, S. & Desiraju, G. R. Crystal engineering of hand-twisted helical crystals. J. Am. Chem. Soc. 139, 1975–1983 (2017). (10.1021/jacs.6b11835) / J. Am. Chem. Soc. by S Saha (2017)
  36. Saha, S. & Desiraju, G. R. A hand-twisted helical crystal based solely on hydrogen bonding. Chem. Commun. 53, 6371–6374 (2017). (10.1039/C7CC02970E) / Chem. Commun. by S Saha (2017)
  37. Krishna, G. R., Devarapalli, R., Lal, G. & Reddy, C. M. Mechanically flexible organic crystals achieved by introducing weak interactions in structure: supramolecular shape synthons. J. Am. Chem. Soc. 138, 13561–13567 (2016). (10.1021/jacs.6b05118) / J. Am. Chem. Soc. by GR Krishna (2016)
  38. Panda, M. K. et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat. Chem. 7, 65–72 (2015). (10.1038/nchem.2123) / Nat. Chem. by MK Panda (2015)
  39. Khandavilli, U. B. R., Bhogala, B. R., Maguire, A. R. & Lawrence, S. E. Symmetry assisted tuning of bending and brittle multi-component forms of probenecid. Chem. Commun. 53, 3381–3384 (2017). (10.1039/C7CC01091E) / Chem. Commun. by UBR Khandavilli (2017)
  40. Alimi, L. O., van Heerden, D. P., Lama, P., Smith, V. J. & Barbour, L. J. Reversible thermosalience of 4-aminobenzonitrile. Chem. Commun. 54, 6208–6211 (2018). (10.1039/C8CC03636E) / Chem. Commun. by LO Alimi (2018)
  41. Khalil, A., Ahmed, E. & Naumov, P. Metal-coated thermosalient crystals as electrical fuses. Chem. Commun. 53, 8470–8473 (2017). (10.1039/C7CC04251E) / Chem. Commun. by A Khalil (2017)
  42. Bushuyev, O. S., Corkery, T. C., Barrett, C. J. & Friščić, T. Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerization. Chem. Sci. 5, 3158–3164 (2014). (10.1039/C4SC00987H) / Chem. Sci. by OS Bushuyev (2014)
  43. Ghosh, S. & Reddy, C. M. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew. Chem. Int. Ed. 51, 10319–10323 (2012). (10.1002/anie.201204604) / Angew. Chem. Int. Ed. by S Ghosh (2012)
  44. Giacovazzo, C. et al. Fundamentals of Crystallography, 3rd Edition, (IUCr/Oxford University Press, Oxford, 2011).
  45. Owczarek, M. et al. Flexible ferroelectric organic crystals. Nat. Commun. 7, 13108 (2016). (10.1038/ncomms13108) / Nat. Commun. by M Owczarek (2016)
  46. Saini, A. K., Natarajan, K. & Mobin, S. M. A new multitalented azine ligand: elastic bending, single-crystal-to-single-crystal transformation and a fluorescence turn-on Al(III) sensor. Chem. Commun. 53, 9870–9873 (2017). (10.1039/C7CC04392A) / Chem. Commun. by AK Saini (2017)
  47. Chou, C.-M. et al. Highly bent crystals formed by restrained π-stacked columns connected via alkylene linkers with variable conformations. Chem. Sci. 6, 2354–2359 (2015). (10.1039/C4SC03849E) / Chem. Sci. by C-M Chou (2015)
  48. Liu, H. et al. Controllably realizing elastic/plastic bending based on a room-temperature phosphorescent waveguiding organic crystal. Chem. Sci. 10, 227–232 (2019). (10.1039/C8SC03135E) / Chem. Sci. by H Liu (2019)
  49. Rajca, A. et al. Functionalized thiophene-based [7]helicene: chirooptical properties versus electron delocalization. J. Org. Chem. 74, 7504–7513 (2009). (10.1021/jo901769c) / J. Org. Chem. by A Rajca (2009)
  50. Commins, P., Karothu, D. P., Naumov, P. Is a bent crystal still a single crystal? Angew. Chem. Int. Ed. 58, 10052–10060 (2019). https://doi.org/10.1002/anie.201814387. (10.1002/anie.201814387) / Angewandte Chemie International Edition by Patrick Commins (2019)
  51. Pejov, L., Panda, M. K., Moriwaki, T. & Naumov, P. Probing structural perturbation in a bent molecular crystal with synchrotron infrared microspectroscopy and periodic density functional theory calculations. J. Am. Chem. Soc. 139, 2318–2328 (2017). (10.1021/jacs.6b11212) / J. Am. Chem. Soc. by L Pejov (2017)
  52. Davey, R. J. et al. Morphology and polymorphism in molecular crystals: terephthalic acid. J. Chem. Soc. Faraday Trans. 90, 1003–1009 (1994). (10.1039/ft9949001003) / J. Chem. Soc. Faraday Trans. by RJ Davey (1994)
  53. Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015). (10.1021/acs.chemrev.5b00398) / Chem. Rev. by P Naumov (2015)
  54. Agilent. CrysAlis PRO. (Agilent Technologies Ltd., Yarnton, Oxfordshire, 2014).
  55. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015). / Acta Cryst. by GM Sheldrick (2015)
  56. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann., H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009). (10.1107/S0021889808042726) / J. Appl. Cryst. by OV Dolomanov (2009)
  57. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). (10.1557/JMR.1992.1564) / J. Mater. Res. by WC Oliver (1992)
Dates
Type When
Created 6 years ago (Aug. 19, 2019, 6:03 a.m.)
Deposited 2 years, 8 months ago (Dec. 16, 2022, 7:51 p.m.)
Indexed 1 day, 17 hours ago (Aug. 21, 2025, 1:08 p.m.)
Issued 6 years ago (Aug. 19, 2019)
Published 6 years ago (Aug. 19, 2019)
Published Online 6 years ago (Aug. 19, 2019)
Funders 0

None

@article{Ahmed_2019, title={Shape-memory effects in molecular crystals}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-11612-z}, DOI={10.1038/s41467-019-11612-z}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ahmed, Ejaz and Karothu, Durga Prasad and Warren, Mark and Naumov, Panče}, year={2019}, month=aug }