Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractWe introduce a novel approach to model heat transport in solids, based on the Green-Kubo theory of linear response. It naturally bridges the Boltzmann kinetic approach in crystals and the Allen-Feldman model in glasses, leveraging interatomic force constants and normal-mode linewidths computed at mechanical equilibrium. At variance with molecular dynamics, our approach naturally and easily accounts for quantum mechanical effects in energy transport. Our methodology is carefully validated against results for crystalline and amorphous silicon from equilibrium molecular dynamics and, in the former case, from the Boltzmann transport equation.

Bibliography

Isaeva, L., Barbalinardo, G., Donadio, D., & Baroni, S. (2019). Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nature Communications, 10(1).

Authors 4
  1. Leyla Isaeva (first)
  2. Giuseppe Barbalinardo (additional)
  3. Davide Donadio (additional)
  4. Stefano Baroni (additional)
References 32 Referenced 193
  1. Ziman, J. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon Press, 1960).
  2. Fugallo, G. & Colombo, L. Calculating lattice thermal conductivity: a synopsis. Phys. Scr. 93, 043002 (2018). (10.1088/1402-4896/aaa6f3) / Phys. Scr. by G Fugallo (2018)
  3. Baroni, S, Bertossa, R, Ercole, L, Grasselli, F. & Marcolongo, A. Heat Transport in Insulators from Ab Initio Green-Kubo Theory. 2edn, 1–36 (Springer International Publishing, Cham, 2018). . (10.1007/978-3-319-50257-1_12-1)
  4. Bedoya-Martinez, O. N., Barrat, J. L. & Rodney, D. Computation of the thermal conductivity using methods based on classical and quantum molecular dynamics. Phys. Rev. B 89, 014303 (2014). (10.1103/PhysRevB.89.014303) / Phys. Rev. B by ON Bedoya-Martinez (2014)
  5. Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena. J. Chem. Phys. 20, 1281–1295 (1952). (10.1063/1.1700722) / J. Chem. Phys. by MS Green (1952)
  6. Green, M. Markoff random processes and the statistical mechanics of time-dependent phenomena. ii. irreversible processes in fluids. J. Chem. Phys. 22, 398–413 (1954). (10.1063/1.1740082) / J. Chem. Phys. by M Green (1954)
  7. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957). (10.1143/JPSJ.12.570) / J. Phys. Soc. Jpn. by R Kubo (1957)
  8. Kubo, R., Yokota, M. & Nakajima, S. Statistical-mechanical theory of irreversible processes. ii. response to thermal disturbance. J. Phys. Soc. Jpn. 12, 1203–1211 (1957). (10.1143/JPSJ.12.1203) / J. Phys. Soc. Jpn. by R Kubo (1957)
  9. Allen, P. & Feldman, J. Thermal conductivity of glasses: theory and application to amorphous si. Phys. Rev. Lett. 62, 645 (1989). (10.1103/PhysRevLett.62.645) / Phys. Rev. Lett. by P Allen (1989)
  10. Allen, P. & Feldman, J. Thermal conductivity of disordered harmonic solids. Phys. Rev. B. 48, 12581 (1993). (10.1103/PhysRevB.48.12581) / Phys. Rev. B. by P Allen (1993)
  11. Fabian, J. & Allen, P. B. Anharmonic decay of vibrational states in amorphous silicon. Phys. Rev. Lett. 77, 3839 (1996). (10.1103/PhysRevLett.77.3839) / Phys. Rev. Lett. by J Fabian (1996)
  12. Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and ab initio simulation of atomic heat transport. Nat. Phys. 12, 80–84 (2016). (10.1038/nphys3509) / Nat. Phys. by A Marcolongo (2016)
  13. Ercole, L., Marcolongo, A., Umari, P. & Baroni, S. Gauge invariance of thermal transport coefficients. J. Low. Temp. Phys. 185, 79 (2016). (10.1007/s10909-016-1617-6) / J. Low. Temp. Phys. by L Ercole (2016)
  14. Negele, J. W. & Orland, H. Quantum Many-particle Systems (Perseus Books, 1988).
  15. Rieder, Z., Lebowitz, J. L. & Lieb, E. Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073–1078 (1967). (10.1063/1.1705319) / J. Math. Phys. by Z Rieder (1967)
  16. Tersoff, J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989). (10.1103/PhysRevB.39.5566) / Phys. Rev. B by J Tersoff (1989)
  17. He, Y., Donadio, D. & Galli, G. Heat transport in amorphous silicon: Interplay between morphology and disorder. Appl. Phys. Lett. 98, 144101 (2011). (10.1063/1.3574366) / Appl. Phys. Lett. by Y He (2011)
  18. He, Y., Savic, I., Donadio, D. & Galli, G. Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Phys. Chem. Chem. Phys. 14, 16209–16222 (2012). (10.1039/c2cp42394d) / Phys. Chem. Chem. Phys. by Y He (2012)
  19. Larkin, J. & McGaughey, A. Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014). (10.1103/PhysRevB.89.144303) / Phys. Rev. B by J Larkin (2014)
  20. Fan, Z. et al. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations. Phys. Rev. B 92, 094301 (2015). (10.1103/PhysRevB.92.094301) / Phys. Rev. B by Z Fan (2015)
  21. Fan, Z., Chen, W., Vierimaa, V. & Harju, A. Efficient molecular dynamics simulations with many-body potentials on graphics processing units. Comp. Phys. Commun. 218, 10 (2017). (10.1016/j.cpc.2017.05.003) / Comp. Phys. Commun. by Z Fan (2017)
  22. Ercole, L., Marcolongo, A. & Baroni, S. Accurate thermal conductivities from optically short molecular dynamics simulations. Sci. Rep. 7, 15835 (2017). (10.1038/s41598-017-15843-2) / Sci. Rep. by L Ercole (2017)
  23. Feldman, J. L., Kluge, M. D., Allen, P. B. & Wooten, F. Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon. Phys. Rev. B 48, 12589–12602 (1993). (10.1103/PhysRevB.48.12589) / Phys. Rev. B by JL Feldman (1993)
  24. Donadio, D. & Galli, G. Temperature dependence of the thermal conductivity of thin silicon nanowires. Nano Lett. 10, 847–851 (2010). (10.1021/nl903268y) / Nano Lett. by D Donadio (2010)
  25. Zhu, T. & Ertekin, E. Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials. Phys. Rev. B 93, 155414–11 (2016). (10.1103/PhysRevB.93.155414) / Phys. Rev. B by T Zhu (2016)
  26. Lv, W. & Henry, A. Direct calculation of modal contributions to thermal conductivity via Green–Kubo modal analysis. New J. Phys. 18, 013028–12 (2016). (10.1088/1367-2630/18/1/013028) / New J. Phys. by W Lv (2016)
  27. Zink, B., Pietri, R. & Hellman, F. Thermal conductivity and specific heat of thin-film amorphous silicon. Phys. Rev. Lett. 96, 55902 (2006). (10.1103/PhysRevLett.96.055902) / Phys. Rev. Lett. by B Zink (2006)
  28. Cahill, D. G., Katiyar, M. & Abelson, J. R. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 50, 6077 (1994). (10.1103/PhysRevB.50.6077) / Phys. Rev. B by DG Cahill (1994)
  29. Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 1–8 (2013). (10.1103/PhysRevB.87.104111) / Phys. Rev. B by O Hellman (2013)
  30. Errea, I., Calandra, M. & Mauri, F. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides. Phys. Rev. B 89, 422–16 (2014). (10.1103/PhysRevB.89.064302) / Phys. Rev. B by I Errea (2014)
  31. Bianco, R., Errea, I., Paulatto, L., Calandra, M. & Mauri, F. Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation. Phys. Rev. B 96, 014111–014126 (2017). (10.1103/PhysRevB.96.014111) / Phys. Rev. B by R Bianco (2017)
  32. Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and disordered solids. Nature Phys. https://www.nature.com/articles/s41567-019-0520-x (2019).
Dates
Type When
Created 5 years, 11 months ago (Aug. 26, 2019, 6:02 a.m.)
Deposited 2 years, 8 months ago (Dec. 16, 2022, 7:55 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 9:22 a.m.)
Issued 5 years, 11 months ago (Aug. 26, 2019)
Published 5 years, 11 months ago (Aug. 26, 2019)
Published Online 5 years, 11 months ago (Aug. 26, 2019)
Funders 0

None

@article{Isaeva_2019, title={Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-11572-4}, DOI={10.1038/s41467-019-11572-4}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Isaeva, Leyla and Barbalinardo, Giuseppe and Donadio, Davide and Baroni, Stefano}, year={2019}, month=aug }