Abstract
AbstractElectrochemical cells that utilize lithium and sodium anodes are under active study for their potential to enable high-energy batteries. Liquid and solid polymer electrolytes based on ether chemistry are among the most promising choices for rechargeable lithium and sodium batteries. However, uncontrolled anionic polymerization of these electrolytes at low anode potentials and oxidative degradation at working potentials of the most interesting cathode chemistries have led to a quite concession in the field that solid-state or flexible batteries based on polymer electrolytes can only be achieved in cells based on low- or moderate-voltage cathodes. Here, we show that cationic chain transfer agents can prevent degradation of ether electrolytes by arresting uncontrolled polymer growth at the anode. We also report that cathode electrolyte interphases composed of preformed anionic polymers and supramolecules provide a fundamental strategy for extending the high voltage stability of ether-based electrolytes to potentials well above conventionally accepted limits.
Authors
11
- Snehashis Choudhury (first)
- Zhengyuan Tu (additional)
- A. Nijamudheen (additional)
- Michael J. Zachman (additional)
- Sanjuna Stalin (additional)
- Yue Deng (additional)
- Qing Zhao (additional)
- Duylinh Vu (additional)
- Lena F. Kourkoutis (additional)
- Jose L. Mendoza-Cortes (additional)
- Lynden A. Archer (additional)
References
50
Referenced
118
-
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015) -
Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).
(
10.1021/acs.chemrev.7b00115
) / Chem. Rev. by X-B Cheng (2017) - Cheng, X. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1–20 (2016). / Adv. Sci. by X Cheng (2016)
-
Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).
(
10.1038/nenergy.2016.114
) / Nat. Energy by MD Tikekar (2016) -
Wei, S., Choudhury, S., Tu, Z., Zhang, K. & Archer, L. A. Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2017).
(
10.1021/acs.accounts.7b00484
) / Acc. Chem. Res. by S Wei (2017) -
Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).
(
10.1038/nnano.2017.16
) / Nat. Nanotechnol. by D Lin (2017) -
Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).
(
10.1039/C6TA02621D
) / J. Mater. Chem. A by L Long (2016) -
Porcarelli, L., Gerbaldi, C., Bella, F. & Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 6, 19892 (2016).
(
10.1038/srep19892
) / Sci. Rep. by L Porcarelli (2016) -
Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).
(
10.1021/ja502133j
) / J. Am. Chem. Soc. by R Khurana (2014) -
Bouchet, R. et al. Single-ion BAB triblock copolymers as efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).
(
10.1038/nmat3602
) / Nat. Mater. by R Bouchet (2013) -
Agrawal, A., Choudhury, S. & Archer, L. A. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Adv. 5, 20800–20809 (2015).
(
10.1039/C5RA01031D
) / RSC Adv. by A Agrawal (2015) -
Srivastava, S., Schaefer, J. L., Yang, Z., Tu, Z. & Archer, L. A. 25th Anniversary Article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 26, 201–234 (2014).
(
10.1002/adma.201303070
) / Adv. Mater. by S Srivastava (2014) -
Rojas, A. A. et al. Effect of lithium-ion concentration on morphology and ion transport in single-ion-conducting block copolymer electrolytes. Macromolecules 48, 6589–6595 (2015).
(
10.1021/acs.macromol.5b01193
) / Macromolecules by AA Rojas (2015) -
Chintapalli, M. et al. Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules 47, 5424–5431 (2014).
(
10.1021/ma501202c
) / Macromolecules by M Chintapalli (2014) -
Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).
(
10.1021/cm303091j
) / Chem. Mater. by JL Schaefer (2013) -
Schaefer, J. L., Moganty, S. S., Yanga, D. A. & Archer, L. A. Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094 (2011).
(
10.1039/c0jm04171h
) / J. Mater. Chem. by JL Schaefer (2011) -
Chusid, O., Ein-Ely, E., Aurbach, D., Babai, M. & Carmeli, Y. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems. J. Power Sources 43, 47–64 (1993).
(
10.1016/0378-7753(93)80101-T
) / J. Power Sources by O Chusid (1993) -
Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).
(
10.1016/S0378-7753(00)00431-6
) / J. Power Sources by D Aurbach (2000) -
Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).
(
10.1016/j.jpowsour.2014.08.011
) / J. Power Sources by R Miao (2014) -
Zhang, X., Cheng, X., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).
(
10.1002/adfm.201605989
) / Adv. Funct. Mater. by X Zhang (2017) -
Choudhury, S. et al. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017).
(
10.1002/anie.201707754
) / Angew. Chem. Int. Ed. by S Choudhury (2017) -
Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2015).
(
10.1002/aelm.201500246
) / Adv. Electron. Mater. by S Choudhury (2015) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotechnol. by G Zheng (2014) -
Li, N.-W., Yin, Y.-X., Yang, C.-P. & Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).
(
10.1002/adma.201504526
) / Adv. Mater. by N-W Li (2016) -
Tu, Z. et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018).
(
10.1038/s41560-018-0096-1
) / Nat. Energy by Z Tu (2018) -
Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 115, 1156–1161 (2018).
(
10.1073/pnas.1712895115
) / Proceedings of the National Academy of Sciences by Liumin Suo (2018) -
Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006).
(
10.1016/j.eurpolymj.2005.09.017
) / Eur. Polym. J. by AM Stephan (2006) -
Zhang, W. et al. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 14, 1703001 (2018).
(
10.1002/smll.201703001
) / Small by W Zhang (2018) -
Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
(
10.1038/ncomms8436
) / Nat. Commun. by W Li (2015) -
Tan, S. et al. Tris(hexafluoro-iso-propyl)phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J. Electrochem. Soc. 160, A285–A292 (2013).
(
10.1149/2.066302jes
) / J. Electrochem. Soc. by S Tan (2013) -
von Cresce, A. & Xu, K. Electrolyte additive in support of 5 V Li ion chemistry. J. Electrochem. Soc. 158, A337–A342 (2011).
(
10.1149/1.3532047
) / J. Electrochem. Soc. by A von Cresce (2011) -
Verma, P., Maire, P. & Novak, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).
(
10.1016/j.electacta.2010.05.072
) / Electrochim. Acta by P Verma (2010) -
Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2015).
(
10.1002/aelm.201500246
) / Adv. Electron. Mater. by S Choudhury (2015) -
Gordin, M. L. et al. Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6, 8006–8010 (2014).
(
10.1021/am501665s
) / ACS Appl. Mater. Interfaces by ML Gordin (2014) -
Adams, B. D. et al. Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40, 607–617 (2017).
(
10.1016/j.nanoen.2017.09.015
) / Nano Energy by BD Adams (2017) -
Yoshida, K. et al. Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. J. Am. Chem. Soc. 133, 13121–13129 (2011).
(
10.1021/ja203983r
) / J. Am. Chem. Soc. by K Yoshida (2011) -
Ueno, K. et al. Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J. Phys. Chem. B 116, 11323–11331 (2012).
(
10.1021/jp307378j
) / J. Phys. Chem. B by K Ueno (2012) -
Tu, Z. et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1, 394–406 (2017).
(
10.1016/j.joule.2017.06.002
) / Joule by Z Tu (2017) -
Amine, K. et al. Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 cell at elevated temperature and additives to improve its cycle life. J. Mater. Chem. 21, 17754–17759 (2011).
(
10.1039/c1jm11584g
) / J. Mater. Chem. by K Amine (2011) -
Xiao, A., Yang, L., Lucht, B. L., Kang, S.-H. & Abraham, D. P. Examining the solid electrolyte interphase on binder-free graphite electrodes. J. Electrochem. Soc. 156, A318–A327 (2009).
(
10.1149/1.3078020
) / J. Electrochem. Soc. by A Xiao (2009) -
Zhu, Y., Li, Y., Bettge, M. & Abraham, D. P. Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2–graphite cells. Electrochim. Acta 110, 191–199 (2013).
(
10.1016/j.electacta.2013.03.102
) / Electrochim. Acta by Y Zhu (2013) -
Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).
(
10.1038/ncomms10101
) / Nat. Commun. by S Choudhury (2015) -
Choudhury, S. et al. Confining electrodeposition of metals in structured electrolytes. Proc. Natl. Acad. Sci. USA 115, 6620–6625 (2018).
(
10.1073/pnas.1803385115
) / Proceedings of the National Academy of Sciences by Snehashis Choudhury (2018) -
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
(
10.1039/b810189b
) / Phys. Chem. Chem. Phys. by J-D Chai (2008) -
Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 84106 (2008).
(
10.1063/1.2834918
) / J. Chem. Phys. by J-D Chai (2008) -
Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).
(
10.1007/BF00533485
) / Theor. Chim. Acta by PC Hariharan (1973) - Frisch, M. J. et al. Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2009).
-
Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).
(
10.1021/cr9904009
) / Chem. Rev. by J Tomasi (2005) -
Zhan, C.-G. & Dixon, D. A. The nature and absolute hydration free energy of the solvated electron in water. J. Phys. Chem. B 107, 4403–4417 (2003).
(
10.1021/jp022326v
) / J. Phys. Chem. B by C-G Zhan (2003)
Dates
Type | When |
---|---|
Created | 6 years, 1 month ago (July 12, 2019, 6:03 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 16, 2022, 7:21 p.m.) |
Indexed | 2 weeks, 5 days ago (Aug. 2, 2025, 1:21 a.m.) |
Issued | 6 years, 1 month ago (July 12, 2019) |
Published | 6 years, 1 month ago (July 12, 2019) |
Published Online | 6 years, 1 month ago (July 12, 2019) |
Funders
1
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- DMR–1609125
@article{Choudhury_2019, title={Stabilizing polymer electrolytes in high-voltage lithium batteries}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-11015-0}, DOI={10.1038/s41467-019-11015-0}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Choudhury, Snehashis and Tu, Zhengyuan and Nijamudheen, A. and Zachman, Michael J. and Stalin, Sanjuna and Deng, Yue and Zhao, Qing and Vu, Duylinh and Kourkoutis, Lena F. and Mendoza-Cortes, Jose L. and Archer, Lynden A.}, year={2019}, month=jul }