Abstract
AbstractThe recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principlesGWand Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI3. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.
Authors
4
- Meng Wu (first)
- Zhenglu Li (additional)
- Ting Cao (additional)
- Steven G. Louie (additional)
References
42
Referenced
140
-
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
(
10.1038/nature22060
) / Nature by C Gong (2017) -
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
(
10.1038/nature22391
) / Nature by B Huang (2017) -
Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).
(
10.1038/s41567-017-0006-7
) / Nat. Phys. by KL Seyler (2018) -
Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).
(
10.1088/2053-1583/aa75ed
) / 2D Mater. by JL Lado (2017) -
Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).
(
10.1103/PhysRevB.34.5390
) / Phys. Rev. B by MS Hybertsen (1986) -
Shih, B.-C. et al. Quasiparticle band gap of ZnO: high accuracy from the conventional G 0 W 0 approach. Phys. Rev. Lett. 105, 146401 (2010).
(
10.1103/PhysRevLett.105.146401
) / Phys. Rev. Lett. by BC Shih (2010) -
Jiang, H. et al. Localized and itinerant states in lanthanide oxides united by GW@LDA + U. Phys. Rev. Lett. 102, 126403 (2009).
(
10.1103/PhysRevLett.102.126403
) / Phys. Rev. Lett. by H Jiang (2009) -
Liechtenstein, A. I. et al. Density-functional theory and strong interactions: orbital ordering in Mott−Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).
(
10.1103/PhysRevB.52.R5467
) / Phys. Rev. B by AI Liechtenstein (1995) -
Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).
(
10.1103/PhysRevB.62.4927
) / Phys. Rev. B by M Rohlfing (2000) -
Qiu, D. Y. et al. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).
(
10.1103/PhysRevLett.111.216805
) / Phys. Rev. Lett. by DY Qiu (2013) -
Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).
(
10.1038/nature13734
) / Nature by Z Ye (2014) -
Wu, F. et al. Exciton band structure of monolayer MoS2. Phys. Rev. B 91, 075310 (2015).
(
10.1103/PhysRevB.91.075310
) / Phys. Rev. B by F Wu (2015) -
Lauret, J. S. et al. Optical transitions in single-wall boron nitride nanotubes. Phys. Rev. Lett. 94, 037405 (2005).
(
10.1103/PhysRevLett.94.037405
) / Phys. Rev. Lett. by JS Lauret (2005) -
Wirtz, L. et al. Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 96, 126104 (2006).
(
10.1103/PhysRevLett.96.126104
) / Phys. Rev. Lett. by L Wirtz (2006) -
Alvarado, S. F. et al. Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys. Rev. Lett. 81, 1082–1085 (1998).
(
10.1103/PhysRevLett.81.1082
) / Phys. Rev. Lett. by SF Alvarado (1998) -
Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006).
(
10.1038/nmat1710
) / Nat. Mater. by GD Scholes (2006) - Grant, P. M. & Street, G. B. Optical properties of the chromium trihalides in the region 1−11 eV. Bull. Am. Phys. Soc. II 13, 415 (1968).
-
Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).
(
10.1103/PhysRev.97.334
) / Phys. Rev. by PN Argyres (1955) -
Erskine, J. L. & Stern, E. A. Magneto-optic Kerr effect in Ni, Co, and Fe. Phys. Rev. Lett. 30, 1329–1332 (1973).
(
10.1103/PhysRevLett.30.1329
) / Phys. Rev. Lett. by JL Erskine (1973) -
Misemer, D. K. The effect of spin−orbit interaction and exchange splitting on magneto-optic coefficients. J. Magn. Magn. Mater. 72, 267–274 (1988).
(
10.1016/0304-8853(88)90221-1
) / J. Magn. Magn. Mater. by DK Misemer (1988) -
Oppeneer, P. M. et al. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni. Phys. Rev. B 45, 10924–10933 (1992).
(
10.1103/PhysRevB.45.10924
) / Phys. Rev. B by PM Oppeneer (1992) -
Oppeneer, P. M. Magneto-optical Kerr spectra. Handb. Magn. Mater. 13, 229–422 (2001).
(
10.1016/S1567-2719(01)13007-6
) / Handb. Magn. Mater. by PM Oppeneer (2001) -
Gudelli, V. K. & Guo, G.-Y. Magnetism and magneto-optical effects in bulk and few-layer CrI3: a theoretical GGA + U study. New J. Phys. 21, 053012 (2019).
(
10.1088/1367-2630/ab1ae9
) / New J. Phys. by VK Gudelli (2019) - Gray, P. R. et al. Analysis and Design of Analog Integrated Circuits (Wiley, Hoboken, NJ, USA, 2001).
-
Bordács, S. et al. Experimental band structure of the nearly half-metallic CuCr2Se4: an optical and magneto-optical study. New J. Phys. 12, 053039 (2010).
(
10.1088/1367-2630/12/5/053039
) / New J. Phys. by S Bordács (2010) -
Feil, H. & Hass, C. Magneto-optical Kerr effect, enhanced by the plasma resonance of charge carriers. Phys. Rev. Lett. 58, 65–68 (1987).
(
10.1103/PhysRevLett.58.65
) / Phys. Rev. Lett. by H Feil (1987) -
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
(
10.1126/sciadv.1603113
) / Sci. Adv. by D Zhong (2017) -
Jiang, P. et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett. 18, 3844–3849 (2018).
(
10.1021/acs.nanolett.8b01125
) / Nano Lett. by P Jiang (2018) - Weber, M. J. Handbook of Optical Materials (CRC Press, Boca Raton, FL, USA, 2002).
-
McGuire, M. A. et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).
(
10.1021/cm504242t
) / Chem. Mater. by MA McGuire (2015) -
Ellsworth, D. et al. Photo-spin-voltaic effect. Nat. Phys. 12, 861–866 (2016).
(
10.1038/nphys3738
) / Nat. Phys. by D Ellsworth (2016) -
Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).
(
10.1038/45502
) / Nature by R Fiederling (1999) -
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
(
10.1038/45509
) / Nature by Y Ohno (1999) -
Jiang, S. et al. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
(
10.1038/s41563-018-0040-6
) / Nat. Mater. by S Jiang (2018) -
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
(
10.1088/0953-8984/21/39/395502
) / J. Phys. Condens. Matter by P Giannozzi (2009) -
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
(
10.1103/PhysRevB.88.085117
) / Phys. Rev. B by DR Hamann (2013) -
Scherpelz, P. et al. Implementation and validation of fully relativistic GW calculations: spin−orbit coupling in molecules, nanocrystals, and solids. J. Chem. Theory Comput. 12, 3523–3544 (2016).
(
10.1021/acs.jctc.6b00114
) / J. Chem. Theory Comput. by P Scherpelz (2016) -
Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).
(
10.1016/j.cpc.2011.12.006
) / Comput. Phys. Commun. by J Deslippe (2012) -
da Jornada, F. H. et al. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).
(
10.1103/PhysRevB.95.035109
) / Phys. Rev. B by FH da Jornada (2017) -
Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
(
10.1016/j.cpc.2007.11.016
) / Comput. Phys. Commun. by AA Mostofi (2008) -
Bradley, C. J. & Cracknell, A. P. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford University Press, Oxford, UK, 2010).
(
10.1093/oso/9780199582587.001.0001
) -
Mulliken, R. S. Electronic structures of polyatomic molecules and valence. IV. Electronic states, quantum theory of the double bond. Phys. Rev. 43, 279–302 (1933).
(
10.1103/PhysRev.43.279
) / Phys. Rev. by RS Mulliken (1933)
Dates
Type | When |
---|---|
Created | 6 years, 3 months ago (May 30, 2019, 6:02 a.m.) |
Deposited | 1 year, 1 month ago (July 18, 2024, 5:38 p.m.) |
Indexed | 5 days, 10 hours ago (Aug. 27, 2025, 12:10 p.m.) |
Issued | 6 years, 3 months ago (May 30, 2019) |
Published | 6 years, 3 months ago (May 30, 2019) |
Published Online | 6 years, 3 months ago (May 30, 2019) |
Funders
2
U.S. Department of Energy
10.13039/100000015
Region: Americas
gov (National government)
Labels
8
- Energy Department
- Department of Energy
- United States Department of Energy
- ENERGY.GOV
- US Department of Energy
- USDOE
- DOE
- USADOE
Awards
1
- DE-AC02-05CH11231
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
2
- EFMA-1542741
- DMR-1508412
@article{Wu_2019, title={Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-10325-7}, DOI={10.1038/s41467-019-10325-7}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wu, Meng and Li, Zhenglu and Cao, Ting and Louie, Steven G.}, year={2019}, month=may }