Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principlesGWand Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI3. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.

Bibliography

Wu, M., Li, Z., Cao, T., & Louie, S. G. (2019). Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nature Communications, 10(1).

Authors 4
  1. Meng Wu (first)
  2. Zhenglu Li (additional)
  3. Ting Cao (additional)
  4. Steven G. Louie (additional)
References 42 Referenced 140
  1. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). (10.1038/nature22060) / Nature by C Gong (2017)
  2. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). (10.1038/nature22391) / Nature by B Huang (2017)
  3. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018). (10.1038/s41567-017-0006-7) / Nat. Phys. by KL Seyler (2018)
  4. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017). (10.1088/2053-1583/aa75ed) / 2D Mater. by JL Lado (2017)
  5. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986). (10.1103/PhysRevB.34.5390) / Phys. Rev. B by MS Hybertsen (1986)
  6. Shih, B.-C. et al. Quasiparticle band gap of ZnO: high accuracy from the conventional G 0 W 0 approach. Phys. Rev. Lett. 105, 146401 (2010). (10.1103/PhysRevLett.105.146401) / Phys. Rev. Lett. by BC Shih (2010)
  7. Jiang, H. et al. Localized and itinerant states in lanthanide oxides united by GW@LDA + U. Phys. Rev. Lett. 102, 126403 (2009). (10.1103/PhysRevLett.102.126403) / Phys. Rev. Lett. by H Jiang (2009)
  8. Liechtenstein, A. I. et al. Density-functional theory and strong interactions: orbital ordering in Mott−Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995). (10.1103/PhysRevB.52.R5467) / Phys. Rev. B by AI Liechtenstein (1995)
  9. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000). (10.1103/PhysRevB.62.4927) / Phys. Rev. B by M Rohlfing (2000)
  10. Qiu, D. Y. et al. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013). (10.1103/PhysRevLett.111.216805) / Phys. Rev. Lett. by DY Qiu (2013)
  11. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014). (10.1038/nature13734) / Nature by Z Ye (2014)
  12. Wu, F. et al. Exciton band structure of monolayer MoS2. Phys. Rev. B 91, 075310 (2015). (10.1103/PhysRevB.91.075310) / Phys. Rev. B by F Wu (2015)
  13. Lauret, J. S. et al. Optical transitions in single-wall boron nitride nanotubes. Phys. Rev. Lett. 94, 037405 (2005). (10.1103/PhysRevLett.94.037405) / Phys. Rev. Lett. by JS Lauret (2005)
  14. Wirtz, L. et al. Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 96, 126104 (2006). (10.1103/PhysRevLett.96.126104) / Phys. Rev. Lett. by L Wirtz (2006)
  15. Alvarado, S. F. et al. Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys. Rev. Lett. 81, 1082–1085 (1998). (10.1103/PhysRevLett.81.1082) / Phys. Rev. Lett. by SF Alvarado (1998)
  16. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006). (10.1038/nmat1710) / Nat. Mater. by GD Scholes (2006)
  17. Grant, P. M. & Street, G. B. Optical properties of the chromium trihalides in the region 1−11 eV. Bull. Am. Phys. Soc. II 13, 415 (1968).
  18. Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955). (10.1103/PhysRev.97.334) / Phys. Rev. by PN Argyres (1955)
  19. Erskine, J. L. & Stern, E. A. Magneto-optic Kerr effect in Ni, Co, and Fe. Phys. Rev. Lett. 30, 1329–1332 (1973). (10.1103/PhysRevLett.30.1329) / Phys. Rev. Lett. by JL Erskine (1973)
  20. Misemer, D. K. The effect of spin−orbit interaction and exchange splitting on magneto-optic coefficients. J. Magn. Magn. Mater. 72, 267–274 (1988). (10.1016/0304-8853(88)90221-1) / J. Magn. Magn. Mater. by DK Misemer (1988)
  21. Oppeneer, P. M. et al. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni. Phys. Rev. B 45, 10924–10933 (1992). (10.1103/PhysRevB.45.10924) / Phys. Rev. B by PM Oppeneer (1992)
  22. Oppeneer, P. M. Magneto-optical Kerr spectra. Handb. Magn. Mater. 13, 229–422 (2001). (10.1016/S1567-2719(01)13007-6) / Handb. Magn. Mater. by PM Oppeneer (2001)
  23. Gudelli, V. K. & Guo, G.-Y. Magnetism and magneto-optical effects in bulk and few-layer CrI3: a theoretical GGA + U study. New J. Phys. 21, 053012 (2019). (10.1088/1367-2630/ab1ae9) / New J. Phys. by VK Gudelli (2019)
  24. Gray, P. R. et al. Analysis and Design of Analog Integrated Circuits (Wiley, Hoboken, NJ, USA, 2001).
  25. Bordács, S. et al. Experimental band structure of the nearly half-metallic CuCr2Se4: an optical and magneto-optical study. New J. Phys. 12, 053039 (2010). (10.1088/1367-2630/12/5/053039) / New J. Phys. by S Bordács (2010)
  26. Feil, H. & Hass, C. Magneto-optical Kerr effect, enhanced by the plasma resonance of charge carriers. Phys. Rev. Lett. 58, 65–68 (1987). (10.1103/PhysRevLett.58.65) / Phys. Rev. Lett. by H Feil (1987)
  27. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017). (10.1126/sciadv.1603113) / Sci. Adv. by D Zhong (2017)
  28. Jiang, P. et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett. 18, 3844–3849 (2018). (10.1021/acs.nanolett.8b01125) / Nano Lett. by P Jiang (2018)
  29. Weber, M. J. Handbook of Optical Materials (CRC Press, Boca Raton, FL, USA, 2002).
  30. McGuire, M. A. et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015). (10.1021/cm504242t) / Chem. Mater. by MA McGuire (2015)
  31. Ellsworth, D. et al. Photo-spin-voltaic effect. Nat. Phys. 12, 861–866 (2016). (10.1038/nphys3738) / Nat. Phys. by D Ellsworth (2016)
  32. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999). (10.1038/45502) / Nature by R Fiederling (1999)
  33. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999). (10.1038/45509) / Nature by Y Ohno (1999)
  34. Jiang, S. et al. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018). (10.1038/s41563-018-0040-6) / Nat. Mater. by S Jiang (2018)
  35. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). (10.1088/0953-8984/21/39/395502) / J. Phys. Condens. Matter by P Giannozzi (2009)
  36. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013). (10.1103/PhysRevB.88.085117) / Phys. Rev. B by DR Hamann (2013)
  37. Scherpelz, P. et al. Implementation and validation of fully relativistic GW calculations: spin−orbit coupling in molecules, nanocrystals, and solids. J. Chem. Theory Comput. 12, 3523–3544 (2016). (10.1021/acs.jctc.6b00114) / J. Chem. Theory Comput. by P Scherpelz (2016)
  38. Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012). (10.1016/j.cpc.2011.12.006) / Comput. Phys. Commun. by J Deslippe (2012)
  39. da Jornada, F. H. et al. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017). (10.1103/PhysRevB.95.035109) / Phys. Rev. B by FH da Jornada (2017)
  40. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008). (10.1016/j.cpc.2007.11.016) / Comput. Phys. Commun. by AA Mostofi (2008)
  41. Bradley, C. J. & Cracknell, A. P. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford University Press, Oxford, UK, 2010). (10.1093/oso/9780199582587.001.0001)
  42. Mulliken, R. S. Electronic structures of polyatomic molecules and valence. IV. Electronic states, quantum theory of the double bond. Phys. Rev. 43, 279–302 (1933). (10.1103/PhysRev.43.279) / Phys. Rev. by RS Mulliken (1933)
Dates
Type When
Created 6 years, 3 months ago (May 30, 2019, 6:02 a.m.)
Deposited 1 year, 1 month ago (July 18, 2024, 5:38 p.m.)
Indexed 5 days, 10 hours ago (Aug. 27, 2025, 12:10 p.m.)
Issued 6 years, 3 months ago (May 30, 2019)
Published 6 years, 3 months ago (May 30, 2019)
Published Online 6 years, 3 months ago (May 30, 2019)
Funders 2
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-AC02-05CH11231
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards2
    1. EFMA-1542741
    2. DMR-1508412

@article{Wu_2019, title={Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-10325-7}, DOI={10.1038/s41467-019-10325-7}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wu, Meng and Li, Zhenglu and Cao, Ting and Louie, Steven G.}, year={2019}, month=may }