Abstract
AbstractSince its inception more than 25 years ago, Piezoresponse Force Microscopy (PFM) has become one of the mainstream techniques in the field of nanoferroic materials. This review describes the evolution of PFM from an imaging technique to a set of advanced methods, which have played a critical role in launching new areas of ferroic research, such as multiferroic devices and domain wall nanoelectronics. The paper reviews the impact of advanced PFM modes concerning the discovery and scientific understanding of novel nanoferroic phenomena and discusses challenges associated with the correct interpretation of PFM data. In conclusion, it offers an outlook for future trends and developments in PFM.
Authors
3
- Alexei Gruverman (first)
- Marin Alexe (additional)
- Dennis Meier (additional)
References
99
Referenced
339
-
Kalinin, S. V. & Gruverman, A. (eds) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer, New York, 2006).
(
10.1007/978-0-387-28668-6
) - Alexe, M. & Gruverman, A. (eds) Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach (Springer, New York, 2004).
-
Kalinin, S. V., Morozovska, A. N., Chen, L. Q. & Rodriguez, B. J. Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010). Review article on imaging, manipulation and spectroscopy of ferroelectric switching by PFM with special emphasis on resolution limits.
(
10.1088/0034-4885/73/5/056502
) / Rep. Prog. Phys. by SV Kalinin (2010) -
Gruverman, A. & Kholkin, A. Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69, 2443–2474 (2006).
(
10.1088/0034-4885/69/8/R04
) / Rep. Prog. Phys. by A Gruverman (2006) -
Soergel, E. Visualization of ferroelectric domains in bulk single crystals. Appl. Phys. B 81, 729–751 (2005).
(
10.1007/s00340-005-1989-9
) / Appl. Phys. B by E Soergel (2005) -
Kaufman, A. B. Ferroelectric memories for security and identification purposes. IEEE Trans. Electron Devices 16, 562–564 (1969). The concept of polarization reading via the converse piezoelectric effect.
(
10.1109/T-ED.1969.16800
) / IEEE Trans. Electron Devices by AB Kaufman (1969) -
Gruverman, A., Auciello, O. & Tokumoto, H. Scanning force microscopy for the study of domain structure in ferroelectric thin films. J. Vac. Sci. Technol. B 14, 602–605 (1996).
(
10.1116/1.589143
) / J. Vac. Sci. Technol. B by A Gruverman (1996) -
Kim, Y. et al. Ionically-mediated electromechanical hysteresis in transition metal oxides. ACS Nano 6, 7026–7033 (2012).
(
10.1021/nn3020757
) / ACS Nano by Y Kim (2012) -
Güthner, P. & Dransfeld, K. Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137–1139 (1992).
(
10.1063/1.107693
) / Appl. Phys. Lett. by P Güthner (1992) -
Güthner, P., Glatz-Reichenbach, J. & Dransfeld, K. Investigation of local piezoelectric properties of thin copolymer films. J. Appl. Phys. 69, 7895–7897 (1991).
(
10.1063/1.347474
) / J. Appl. Phys. by P Güthner (1991) -
Birk, H., Glatz-Reichenbach, J., Jie, L., Schreck, E. & Dransfeld, K. The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy. J. Vac. Sci. Technol. B 9, 1162–1165 (1991).
(
10.1116/1.585238
) / J. Vac. Sci. Technol. B by H Birk (1991) - Cross, L. E. & Newnham, R. E. High-Technology Ceramics (American Ceramic Society, Ohio, 1987). / High-Technology Ceramics by LE Cross (1987)
-
Gruverman, A., Auciello, O. & Tokumoto, H. Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 69, 3191–3193 (1996).
(
10.1063/1.117957
) / Appl. Phys. Lett. by A Gruverman (1996) -
Alexe, M., Harnagea, C., Hesse, D. & Gosele, U. Patterning and switching of nanosize ferroelectric memory cells. Appl. Phys. Lett. 75, 1793–1795 (1999).
(
10.1063/1.124822
) / Appl. Phys. Lett. by M Alexe (1999) -
Tybell, T., Ahn, C. H. & Triscone, J.-M. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999).
(
10.1063/1.124536
) / Appl. Phys. Lett. by T Tybell (1999) -
Ganpule, C. S. et al. Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films. Appl. Phys. Lett. 75, 3874–3876 (1999).
(
10.1063/1.125485
) / Appl. Phys. Lett. by CS Ganpule (1999) -
Luo, Y. et al. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440–442 (2003).
(
10.1063/1.1592013
) / Appl. Phys. Lett. by Y Luo (2003) -
Eng, L. M. Nanoscale domain engineering and characterization of ferroelectric domains. Nanotechnology 10, 405–411 (1999).
(
10.1088/0957-4484/10/4/308
) / Nanotechnology by LM Eng (1999) -
Jesse, S., Baddorf, A. P. & Kalinin, S. V. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).
(
10.1063/1.2172216
) / Appl. Phys. Lett. by S Jesse (2006) -
Hong, S. et al. High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors. J. Appl. Phys. 86, 607–613 (1999).
(
10.1063/1.370774
) / J. Appl. Phys. by S Hong (1999) -
Gruverman, A., Wu, D. & Scott, J. F. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100, 097601 (2008). First direct observation of domain nucleation and domain wall dynamics at the sub-100-ns time scale in micrometer-size device-grade PZT capacitors.
(
10.1103/PhysRevLett.100.097601
) / Phys. Rev. Lett. by A Gruverman (2008) -
Kalinin, S. V. et al. Vector piezoresponse force microscopy. Microsc. Microanal. 12, 206–220 (2006).
(
10.1017/S1431927606060156
) / Microsc. Microanal. by SV Kalinin (2006) -
Eng, L. M., Güntherodt, H.-J., Schneider, G. A., Köpke, U. & Muñoz Saldaña, J. Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium–titanate ceramics. Appl. Phys. Lett. 74, 233–235 (1999).
(
10.1063/1.123266
) / Appl. Phys. Lett. by LM Eng (1999) -
Kalinin, S. V. et al. Imaging mechanism of piezoresponse force microscopy in capacitor structures. Appl. Phys. Lett. 92, 152906 (2008).
(
10.1063/1.2905266
) / Appl. Phys. Lett. by SV Kalinin (2008) -
Harnagea, C., Pignolet, A., Alexe, M. & Hesse, D. Piezoresponse scanning force microscopy: what quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Integr. Ferroelectr. 38, 23–29 (2001). Introduction of the method to relate the PFM amplitude to the ferroelectric polarization value while taking into account the anisotropic nature of the piezoelectric tensor and polarization orientation.
(
10.1080/10584580108016914
) / Integr. Ferroelectr. by C Harnagea (2001) -
Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006). First demonstration of electrical control of antiferromagnetic domain structure in a single-phase multiferroic material.
(
10.1038/nmat1731
) / Nat. Mater. by T Zhao (2006) -
Yoshida, C., Yoshida, A. & Tamura, H. Nanoscale conduction modulation in Au/Pb(Zr, Ti)O3/SrRuO3 heterostructure. Appl. Phys. Lett. 75, 1449–1451 (1999).
(
10.1063/1.124721
) / Appl. Phys. Lett. by C Yoshida (1999) -
Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009). First demonstration of polarization-controlled tunnel electroresistance effect using a combination of PFM and C-AFM.
(
10.1038/nature08128
) / Nature by V Garcia (2009) -
Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).
(
10.1021/nl901754t
) / Nano Lett. by A Gruverman (2009) -
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). First demonstration of domain wall conductivity using a combination of PFM and C-AFM.
(
10.1038/nmat2373
) / Nat. Mater. by J Seidel (2009) -
Geng, Y., Lee, N., Choi, Y. J., Cheong, S. W. & Wu, W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055–6059 (2012).
(
10.1021/nl301432z
) / Nano Lett. by Y Geng (2012) -
Denning, D., Guyonnet, J. & Rodriguez, B. J. Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond. Int. Mater. Rev. 61, 46–70 (2016).
(
10.1179/1743280415Y.0000000013
) / Int. Mater. Rev. by D Denning (2016) -
Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).
(
10.1088/0957-4484/18/47/475504
) / Nanotechnology by BJ Rodriguez (2007) -
Harnagea, C., Alexe, M., Hesse, D. & Pignolet, A. Contact resonances in voltage-modulated force microscopy. Appl. Phys. Lett. 83, 338–340 (2003).
(
10.1063/1.1592307
) / Appl. Phys. Lett. by C Harnagea (2003) -
Borowiak, A. S. et al. Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies. Appl. Phys. Lett. 105, 012906 (2014).
(
10.1063/1.4889853
) / Appl. Phys. Lett. by AS Borowiak (2014) -
Bark, C. W. et al. Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. Nano Lett. 12, 1765–1771 (2012).
(
10.1021/nl3001088
) / Nano Lett. by CW Bark (2012) -
Kim, Y. et al. Mechanical control of electroresistive switching. Nano Lett. 13, 4068–4074 (2013).
(
10.1021/nl401411r
) / Nano Lett. by Y Kim (2013) -
Seol, D., Kim, B. & Kim, Y. Non-piezoelectric effects in piezoresponse force microscopy. Curr. Appl. Phys. 17, 661–674 (2017).
(
10.1016/j.cap.2016.12.012
) / Curr. Appl. Phys. by D Seol (2017) -
Miao, H., Tan, C., Zhou, X., Wei, X. & Li, F. More ferroelectrics discovered by switching spectroscopy piezoresponse force microscopy? EPL 108, 27010 (2014).
(
10.1209/0295-5075/108/27010
) / EPL by H Miao (2014) -
Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J. Phys. Chem. C 120, 5724–5731 (2016).
(
10.1021/acs.jpcc.5b11469
) / J. Phys. Chem. C by IM Hermes (2016) -
Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).
(
10.1021/jz501697b
) / J. Phys. Chem. Lett. by Y Kutes (2014) -
Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9, 6484–6492 (2015). Consideration of various mechanisms of the PFM image formation.
(
10.1021/acsnano.5b02227
) / ACS Nano by N Balke (2015) -
Kalinin, S. V. & Bonnell, D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B. 65, 125408 (2002).
(
10.1103/PhysRevB.65.125408
) / Phys. Rev. B. by SV Kalinin (2002) -
Soergel, E. Piezoresponse force microscopy (PFM). J. Phys. D Appl. Phys. 44, 464003 (2011).
(
10.1088/0022-3727/44/46/464003
) / J. Phys. D Appl. Phys. by E Soergel (2011) -
Balke, N. et al. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology 27, 425707 (2016).
(
10.1088/0957-4484/27/42/425707
) / Nanotechnology by N Balke (2016) -
Morozovska, A. N. et al. Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. J. Appl. Phys. 102, 114108 (2007).
(
10.1063/1.2818370
) / J. Appl. Phys. by AN Morozovska (2007) -
Dahan, D. et al. Ferroelectric domain inversion: the role of humidity. Appl. Phys. Lett. 89, 152902 (2006).
(
10.1063/1.2358855
) / Appl. Phys. Lett. by D Dahan (2006) -
Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nano 7, 101–104 (2012).
(
10.1038/nnano.2011.213
) / Nat. Nano by A Chanthbouala (2012) -
Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11, 289–293 (2012).
(
10.1038/nmat3254
) / Nat. Mater. by D Pantel (2012) -
Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).
(
10.1038/nmat3415
) / Nat. Mater. by A Chanthbouala (2012) -
Kim, D. J. et al. Ferroelectric tunnel memristor. Nano Lett. 12, 5697–5702 (2012).
(
10.1021/nl302912t
) / Nano Lett. by DJ Kim (2012) -
Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).
(
10.1038/ncomms14736
) / Nat. Commun. by S Boyn (2017) -
Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753–758 (2011).
(
10.1038/nmat3098
) / Nat. Mater. by S Valencia (2011) -
Martin, L. W. et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008).
(
10.1021/nl801391m
) / Nano Lett. by LW Martin (2008) -
Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).
(
10.1038/nmat2184
) / Nat. Mater. by YH Chu (2008) -
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
(
10.1038/nature23656
) / Nature by I Gross (2017) -
Geng, Y. et al. Direct visualization of magnetoelectric domains. Nat. Mater. 13, 163–167 (2014).
(
10.1038/nmat3813
) / Nat. Mater. by Y Geng (2014) -
Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).
(
10.1038/nmat2632
) / Nat. Mater. by T Choi (2010) -
Chae, S. C. et al. Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).
(
10.1103/PhysRevLett.108.167603
) / Phys. Rev. Lett. by SC Chae (2012) -
Lilienblum, M. et al. Ferroelectricity in the multiferroic hexagonal manganites. Nat. Phys. 11, 1070–1073 (2015).
(
10.1038/nphys3468
) / Nat. Phys. by M Lilienblum (2015) -
Jungk, T., Hoffmann, Á., Fiebig, M. & Soergel, E. Electrostatic topology of ferroelectric domains in YMnO3. Appl. Phys. Lett. 97, 012904 (2010).
(
10.1063/1.3460286
) / Appl. Phys. Lett. by T Jungk (2010) -
Evans, D. M. et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 4, 1534 (2013).
(
10.1038/ncomms2548
) / Nat. Commun. by DM Evans (2013) -
Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
(
10.1038/nature03107
) / Nature by II Naumov (2004) -
Lee, W. et al. Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nat. Nanotechnol. 3, 402–407 (2008).
(
10.1038/nnano.2008.161
) / Nat. Nanotechnol. by W Lee (2008) -
Ivry, Y., Chu, D. P., Scott, J. F. & Durkan, C. Flux closure vortex-like domain structures in ferroelectric thin films. Phys. Rev. Lett. 104, 207602 (2010).
(
10.1103/PhysRevLett.104.207602
) / Phys. Rev. Lett. by Y Ivry (2010) -
McQuaid, R. G. P., McGilly, L. J., Sharma, P., Gruverman, A. & Gregg, J. M. Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2, 404 (2011).
(
10.1038/ncomms1413
) / Nat. Commun. by RGP McQuaid (2011) -
Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 29, 1702375 (2017).
(
10.1002/adma.201702375
) / Adv. Mater. by Q Zhang (2017) -
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). Key review article on domain walls highlighting the role of PFM in delineating their properties.
(
10.1103/RevModPhys.84.119
) / Rev. Mod. Phys. by G Catalan (2012) -
Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).
(
10.1038/nmat3249
) / Nat. Mater. by D Meier (2012) -
Schaab, J. et al. Optimization of electronic domain-wall properties by aliovalent cation substitution. Adv. Electron. Mater. 2, 1500195 (2016).
(
10.1002/aelm.201500195
) / Adv. Electron. Mater. by J Schaab (2016) -
Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).
(
10.1002/adma.201102254
) / Adv. Mater. by J Guyonnet (2011) -
Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).
(
10.1038/ncomms2839
) / Nat. Commun. by T Sluka (2013) -
Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).
(
10.1038/nmat4168
) / Nat. Mater. by YS Oh (2015) -
McQuaid, R. G. P., Campbell, M. P., Whatmore, R. W., Kumar, A. & Gregg, J. M. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat. Commun. 8, 15105 (2017).
(
10.1038/ncomms15105
) / Nat. Commun. by RGP McQuaid (2017) -
Whyte, J. R. et al. Ferroelectric domain wall injection. Adv. Mater. 26, 293–298 (2014).
(
10.1002/adma.201303567
) / Adv. Mater. by JR Whyte (2014) -
Whyte, J. R. & Gregg, J. M. A diode for ferroelectric domain-wall motion. Nat. Commun. 6, 7361 (2015).
(
10.1038/ncomms8361
) / Nat. Commun. by JR Whyte (2015) -
Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622–627 (2017).
(
10.1038/nmat4878
) / Nat. Mater. by JA Mundy (2017) -
Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).
(
10.1126/sciadv.1700512
) / Sci. Adv. by P Sharma (2017) -
Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).
(
10.1146/annurev-matsci-071312-121634
) / Annu. Rev. Mater. Res. by P Zubko (2013) -
Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012). Pioneering observation of purely mechanical 180° switching of polarization via flexoelectric effect.
(
10.1126/science.1218693
) / Science by H Lu (2012) -
Sharma, P. et al. Electromechanics of ferroelectric-like behavior of LaAlO3 thin films. Adv. Funct. Mater. 25, 6538–6544 (2015).
(
10.1002/adfm.201502483
) / Adv. Funct. Mater. by P Sharma (2015) -
Das, S. et al. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity. Nat. Commun. 8, 615 (2017).
(
10.1038/s41467-017-00710-5
) / Nat. Commun. by S Das (2017) -
Yang, M. M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018). The bulk photovoltaic effect can be realized in any semiconductor, including silicon, via the flexoelectric effect.
(
10.1126/science.aan3256
) / Science by MM Yang (2018) -
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).
(
10.1038/nnano.2009.451
) / Nat. Nanotechnol. by SY Yang (2010) -
Bhatnagar, A., Roy Chaudhuri, A., Heon Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).
(
10.1038/ncomms3835
) / Nat. Commun. by A Bhatnagar (2013) -
Yang, M.-M., Bhatnagar, A., Luo, Z.-D. & Alexe, M. Enhancement of local photovoltaic current at ferroelectric domain walls in BiFeO3. Sci. Rep. 7, 43070 (2017).
(
10.1038/srep43070
) / Sci. Rep. by MM Yang (2017) -
Yang, M. M. & Alexe, M. Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv. Mater. 30, 1704908 (2018). Demonstration of light-induced ferroelectric switching.
(
10.1002/adma.201704908
) / Adv. Mater. by MM Yang (2018) -
Ievlev, A. V. et al. Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching. ACS Appl. Mater. Interfaces 8, 29588–29593 (2016).
(
10.1021/acsami.6b10784
) / ACS Appl. Mater. Interfaces by AV Ievlev (2016) -
Nath, R., Chu, Y.-H., Polomoff, N. A., Ramesh, R. & Huey, B. D. High speed piezoresponse force microscopy: <1 frame per second nanoscale imaging. Appl. Phys. Lett. 93, 072905 (2008).
(
10.1063/1.2969045
) / Appl. Phys. Lett. by R Nath (2008) -
Campbell, M. P. et al. Hall effect in charged conducting ferroelectric domain walls. Nat. Commun. 7, 13764 (2016).
(
10.1038/ncomms13764
) / Nat. Commun. by MP Campbell (2016) -
Schaab, J. et al. Contact-free mapping of electronic transport phenomena of polar domains in SrMnO3 films. Phys. Rev. Appl. 5, 054009 (2016).
(
10.1103/PhysRevApplied.5.054009
) / Phys. Rev. Appl. by J Schaab (2016) -
De Luca, G. et al. Domain wall architecture in tetragonal ferroelectric thin films. Adv. Mater. 29, 1605145 (2017).
(
10.1002/adma.201605145
) / Adv. Mater. by G De Luca (2017) -
Kim, D. J. et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).
(
10.1063/1.2790485
) / Appl. Phys. Lett. by DJ Kim (2007) -
Gruverman, A., Cross, J. S. & Oates, W. S. Peculiar effect of mechanical stress on polarization stability in micrometer-scale ferroelectric capacitors. Appl. Phys. Lett. 93, 242902 (2008).
(
10.1063/1.3046734
) / Appl. Phys. Lett. by A Gruverman (2008) -
Jesse, S. et al. Direct imaging of the spatial and energy distribution of nucleation centers in ferroelectric materials. Nat. Mater. 7, 209–215 (2008).
(
10.1038/nmat2114
) / Nat. Mater. by S Jesse (2008) -
Park, M. et al. Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy. Appl. Phys. Lett. 97, 112907 (2010).
(
10.1063/1.3487933
) / Appl. Phys. Lett. by M Park (2010) -
Labuda, A. & Proksch, R. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope. Appl. Phys. Lett. 106, 253103 (2015).
(
10.1063/1.4922210
) / Appl. Phys. Lett. by A Labuda (2015) -
Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).
(
10.1088/0957-4484/18/43/435503
) / Nanotechnology by S Jesse (2007) -
Peter, F. et al. Contributions to in-plane piezoresponse on axially symmetrical samples. Rev. Sci. Instrum. 76, 106108 (2005).
(
10.1063/1.2090367
) / Rev. Sci. Instrum. by F Peter (2005)
Dates
Type | When |
---|---|
Created | 6 years, 4 months ago (April 10, 2019, 6:18 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 16, 2022, 5:28 p.m.) |
Indexed | 1 day, 23 hours ago (Aug. 21, 2025, 1:01 p.m.) |
Issued | 6 years, 4 months ago (April 10, 2019) |
Published | 6 years, 4 months ago (April 10, 2019) |
Published Online | 6 years, 4 months ago (April 10, 2019) |
@article{Gruverman_2019, title={Piezoresponse force microscopy and nanoferroic phenomena}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-019-09650-8}, DOI={10.1038/s41467-019-09650-8}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Gruverman, Alexei and Alexe, Marin and Meier, Dennis}, year={2019}, month=apr }