Abstract
AbstractPhoton upconversion is an anti-Stokes process in which an absorption of a photon leads to a reemission of a photon at an energy higher than the excitation energy. The upconversion photoemission has been already demonstrated in rare earth atoms in glasses, semiconductor quantum wells, nanobelts, carbon nanotubes and atomically thin semiconductors. Here, we demonstrate a room temperature upconversion photoluminescence process in a monolayer semiconductor WS2, with energy gain up to 150 meV. We attribute this process to transitions involving trions and many phonons and free exciton complexes. These results are very promising for energy harvesting, laser refrigeration and optoelectronics at the nanoscale.
Authors
7
- J. Jadczak (first)
- L. Bryja (additional)
- J. Kutrowska-Girzycka (additional)
- P. Kapuściński (additional)
- M. Bieniek (additional)
- Y.-S. Huang (additional)
- P. Hawrylak (additional)
References
46
Referenced
81
-
Epstein, R. I., Buchwald, M. I., Edwards, B. C., Gosnell, T. R. & Mungan, C. E. Observation of laser-induced fluorescent cooling of a solid. Nature 377, 500–503 (1995).
(
10.1038/377500a0
) / Nature by RI Epstein (1995) -
Seletskiy, D. V. et al. Laser cooling of solids to cryogenic temperatures. Nat. Photonics 4, 161–164 (2010).
(
10.1038/nphoton.2009.269
) / Nat. Photonics by DV Seletskiy (2010) -
Seletskiy, D. V., Epstein, R. & Sheik-Bahae, M. Laser cooling in solids: advances and prospects. Reports Prog. Phys. 79, 096401 (2016).
(
10.1088/0034-4885/79/9/096401
) -
Finkeißen, E., Potemski, M., Wyder, P., Viña, L. & Weimann, G. Cooling of a semiconductor by luminescence up-conversion. Appl. Phys. Lett. 75, 1258–1260 (1999).
(
10.1063/1.124660
) / Appl. Phys. Lett. by E Finkeißen (1999) -
Rupper, G., Kwong, N. H. & Binder, R. Large excitonic enhancement of optical refrigeration in semiconductors. Phys. Rev. Lett. 97, 1–4 (2006).
(
10.1103/PhysRevLett.97.117401
) / Phys. Rev. Lett. by G Rupper (2006) -
Eshlaghi, S., Worthoff, W., Wieck, A. D. & Suter, D. Luminescence upconversion in GaAs quantum wells. Phys. Rev. B 77, 1–7 (2008).
(
10.1103/PhysRevB.77.245317
) / Phys. Rev. B by S Eshlaghi (2008) -
Khurgin, J. B. Role of bandtail states in laser cooling of semiconductors. Phys. Rev. B 77, 1–9 (2008).
(
10.1103/PhysRevB.77.235206
) / Phys. Rev. B by JB Khurgin (2008) -
Zhang, J., Li, D., Chen, R. & Xiong, Q. Laser cooling of a semiconductor by 40 kelvin. Nature 493, 504–508 (2013).
(
10.1038/nature11721
) / Nature by J Zhang (2013) -
Akizuki, N., Aota, S., Mouri, S., Matsuda, K. & Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 6, 1–6 (2015).
(
10.1038/ncomms9920
) / Nat. Commun. by N Akizuki (2015) -
Jones, A. M. et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 12, 323–327 (2016).
(
10.1038/nphys3604
) / Nat. Phys. by AM Jones (2016) -
Manca, M. et al. Enabling Valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun. 8, 1–7 (2017).
(
10.1038/ncomms14927
) / Nat. Commun. by M Manca (2017) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by KF Mak (2010) -
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano. Lett. 10, 1271–1275 (2010).
(
10.1021/nl903868w
) / Nano. Lett. by A Splendiani (2010) -
Jadczak, J., Delgado, A., Bryja, L., Huang, Y. S. & Hawrylak, P. Robust high-temperature trion emission in monolayers of Mo(SySe1-y)2 alloys. Phys. Rev. B 95, 195427 (2017).
(
10.1103/PhysRevB.95.195427
) / Phys. Rev. B by J Jadczak (2017) -
Bieniek, M. et al. Band nesting, massive Dirac fermions, and valley Landé and Zeeman effects in transition metal dichalcogenides: a tight-binding model. Phys. Rev. B 97, 1–9 (2018).
(
10.1103/PhysRevB.97.085153
) / Phys. Rev. B by M Bieniek (2018) -
Mitioglu, A. A. et al. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 88, 245403 (2013).
(
10.1103/PhysRevB.88.245403
) / Phys. Rev. B by AA Mitioglu (2013) -
Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).
(
10.1038/nature13734
) / Nature by Z Ye (2014) -
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
(
10.1103/PhysRevLett.113.076802
) / Phys. Rev. Lett. by A Chernikov (2014) -
Plechinger, G. et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat. Commun. 7, 12715 (2016).
(
10.1038/ncomms12715
) / Nat. Commun. by G Plechinger (2016) -
Molas, M. R. et al. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale 9, 13128–13141 (2017).
(
10.1039/C7NR04672C
) / Nanoscale by MR Molas (2017) -
Jadczak, J., Kutrowska-Girzycka, J., Kapuściński, P., Wójs, A. & Bryja, L. Probing of free and localized excitons and trions in atomically thin WSe2,WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology 28, 395702 (2017).
(
10.1088/1361-6528/aa87d0
) / Nanotechnology by J Jadczak (2017) -
Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano. Lett. 13, 2831–2836 (2013).
(
10.1021/nl4011172
) / Nano. Lett. by S Tongay (2013) -
Miller, B., Parzinger, E., Vernickel, A., Holleitner, A. W. & Wurstbauer, U. Photogating of mono- and few-layer MoS2. Appl. Phys. Lett. 106, 122103 (2015).
(
10.1063/1.4916517
) / Appl. Phys. Lett. by B Miller (2015) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
Shang, J. et al. Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting WS2 and MoS2. Phys. Rev. Mater. 1, 074001 (2017).
(
10.1103/PhysRevMaterials.1.074001
) / Phys. Rev. Mater. by J Shang (2017) -
Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012).
(
10.1016/j.ssc.2012.02.005
) / Solid State Commun. by ES Kadantsev (2012) -
Kioseoglou, G. et al. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett. 101, 221907 (2012).
(
10.1063/1.4768299
) -
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).
(
10.1038/nnano.2012.96
) / Nat. Nanotechnol. by KF Mak (2012) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
(
10.1038/ncomms2498
) / Nat. Commun. by JS Ross (2013) -
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
(
10.1038/nphys2942
) / Nat. Phys. by X Xu (2014) -
Scrace, T. et al. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nat. Nanotechnol. 10, 603–607 (2015).
(
10.1038/nnano.2015.78
) / Nat. Nanotechnol. by T Scrace (2015) -
Schneider, L. M. et al. The influence of the environment on monolayer tungsten diselenide photoluminescence. Nano-Struct. & Nano-Objects 15, 84–97 (2018).
(
10.1016/j.nanoso.2017.08.009
) / Nano-Struct. & Nano-Objects by LM Schneider (2018) - Tuan, D. V., Jones, A. M., Yang, M., Xu, X. and Dery, H., Virtual trions in the photoluminescence of monolayer transition-metal dichalcogenides. Preprint at https://arxiv.org/abs/1805.08722 (2018).
-
Chen, S. Y., Zheng, C., Fuhrer, M. S. & Yan, J. Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano. Lett. 15, 2526–2532 (2015).
(
10.1021/acs.nanolett.5b00092
) / Nano. Lett. by SY Chen (2015) -
Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 1–8 (2011).
(
10.1103/PhysRevB.84.155413
) / Phys. Rev. B by A Molina-Sánchez (2011) -
Yang, J., Lee, J. U. & Cheong, H. Excitation energy dependence of Raman spectra of few-layer WS2. FlatChem 3, 64–70 (2017).
(
10.1016/j.flatc.2017.06.001
) / FlatChem by J Yang (2017) -
Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C. & Pimenta, M. A. Symmetry-Dependent Exciton-Phonon Coupling in 2D and Bulk MoS2 Observed by Resonance Raman Scattering. Phys. Rev. Lett. 114, 136403 (2015).
(
10.1103/PhysRevLett.114.136403
) / Phys. Rev. Lett. by BR Carvalho (2015) - Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 2–5 (2012). / Phys. Rev. B by B Chakraborty (2012)
-
Molas, M. R., Nogajewski, K., Potemski, M. & Babiński, A. Raman scattering excitation spectroscopy of monolayer WS2. Sci. Rep. 7, 5036 (2017).
(
10.1038/s41598-017-05367-0
) / Sci. Rep. by MR Molas (2017) -
Jiang, Z. X., McCombe, B. D. & Hawrylak, P. Donor impurities as a probe of electron correlations in a two-dimensional electron gas in high magnetic fields. Phys. Rev. Lett. 81, 3499–3502 (1998).
(
10.1103/PhysRevLett.81.3499
) / Phys. Rev. Lett. by ZX Jiang (1998) - Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 1–6 (2015). / Phys. Rev. Lett. by G Wang (2015)
-
Seyler, K. L. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 1–5 (2015).
(
10.1038/nnano.2015.73
) / Nat. Nanotechnol. by KL Seyler (2015) -
Kumar, N. et al. Exciton-exciton annihilation in MoSe2 monolayers. Phys. Rev. B 89, 125427 (2014).
(
10.1103/PhysRevB.89.125427
) / Phys. Rev. B by N Kumar (2014) -
Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B 90, 155449 (2014).
(
10.1103/PhysRevB.90.155449
) / Phys. Rev. B by S Mouri (2014) -
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
(
10.1088/2053-1583/1/1/011002
) / 2D Mater. by A Castellanos-Gomez (2014)
Dates
Type | When |
---|---|
Created | 6 years, 7 months ago (Jan. 4, 2019, 5:27 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 16, 2022, 1:57 p.m.) |
Indexed | 3 weeks ago (Aug. 6, 2025, 8:32 a.m.) |
Issued | 6 years, 7 months ago (Jan. 10, 2019) |
Published | 6 years, 7 months ago (Jan. 10, 2019) |
Published Online | 6 years, 7 months ago (Jan. 10, 2019) |
@article{Jadczak_2019, title={Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2}, volume={10}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-07994-1}, DOI={10.1038/s41467-018-07994-1}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Jadczak, J. and Bryja, L. and Kutrowska-Girzycka, J. and Kapuściński, P. and Bieniek, M. and Huang, Y.-S. and Hawrylak, P.}, year={2019}, month=jan }