Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractHeterostructures formed by stacking layered materials require atomically clean interfaces. However, contaminants are usually trapped between the layers, aggregating into randomly located blisters, incompatible with scalable fabrication processes. Here we report a process to remove blisters from fully formed heterostructures. Our method is over an order of magnitude faster than those previously reported and allows multiple interfaces to be cleaned simultaneously. We fabricate blister-free regions of graphene encapsulated in hexagonal boron nitride with an area ~ 5000 μm2, achieving mobilities up to 180,000 cm2 V−1 s−1 at room temperature, and 1.8 × 106 cm2 V−1 s−1 at 9 K. We also assemble heterostructures using graphene intentionally exposed to polymers and solvents. After cleaning, these samples reach similar mobilities. This demonstrates that exposure of graphene to process-related contaminants is compatible with the realization of high mobility samples, paving the way to the development of wafer-scale processes for the integration of layered materials in (opto)electronic devices.

Bibliography

Purdie, D. G., Pugno, N. M., Taniguchi, T., Watanabe, K., Ferrari, A. C., & Lombardo, A. (2018). Cleaning interfaces in layered materials heterostructures. Nature Communications, 9(1).

Authors 6
  1. D. G. Purdie (first)
  2. N. M. Pugno (additional)
  3. T. Taniguchi (additional)
  4. K. Watanabe (additional)
  5. A. C. Ferrari (additional)
  6. A. Lombardo (additional)
References 80 Referenced 395
  1. Kroemer, H. Quasi-electric and quasi-magnetic fields in non-uniform semiconductors. RCA Rev. 18, 332–342 (1957). / RCA Rev. by H Kroemer (1957)
  2. Shockley, W. US Patent 2,569,347 (1951).
  3. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970). (10.1147/rd.141.0061) / IBM J. Res. Dev. by L Esaki (1970)
  4. Kroemer, H. A proposed class of hetero-junction injection lasers. Proc. IEEE 51, 1782–1783 (1963). (10.1109/PROC.1963.2706) / Proc. IEEE by H Kroemer (1963)
  5. Mimura, T. The early history of the high electron mobility transistor (HEMT). IEEE Trans. Microw. Theory Tech. 50, 780–782 (2002). (10.1109/22.989961) / IEEE Trans. Microw. Theory Tech. by T Mimura (2002)
  6. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994). (10.1126/science.264.5158.553) / Science by J Faist (1994)
  7. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). (10.1126/science.aac9439) / Science by KS Novoselov (2016)
  8. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). (10.1126/science.1218461) / Science by L Britnell (2012)
  9. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012). (10.1038/nphys2441) / Nat. Phys. by RV Gorbachev (2012)
  10. Lee, C.-H. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). (10.1038/nnano.2014.150) / Nat. Nanotechnol. by CH Lee (2014)
  11. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2012). (10.1038/nnano.2012.224) / Nat. Nanotechnol. by T Georgiou (2012)
  12. Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012). (10.1016/S1369-7021(13)70014-2) / Mater. Today by F Bonaccorso (2012)
  13. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2014). (10.1039/C4NR01600A) / Nanoscale by AC Ferrari (2014)
  14. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (10.1038/nature26160) / Nature by Y Cao (2018)
  15. Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014). (10.1038/nnano.2014.187) / Nat. Nanotechnol. by A Mishchenko (2014)
  16. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). (10.1126/science.1171245) / Science by X Li (2009)
  17. Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano. Lett. 12, 2751–2756 (2012). (10.1021/nl204481s) / Nano. Lett. by N Petrone (2012)
  18. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  19. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
  20. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano. Lett. 11, 2396–2399 (2011). (10.1021/nl200758b) / Nano. Lett. by AS Mayorov (2011)
  21. Banszerus, L. et al. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano. Lett. 16, 1387–1391 (2016). (10.1021/acs.nanolett.5b04840) / Nano. Lett. by L Banszerus (2016)
  22. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015). (10.1126/sciadv.1500222) / Sci. Adv. by L Banszerus (2015)
  23. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016). (10.1038/ncomms11894) / Nat. Commun. by F Pizzocchero (2016)
  24. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2014). (10.1038/nature12186) / Nature by CR Dean (2014)
  25. Lin, Y. C. et al. Graphene annealing: How clean can it be? Nano. Lett. 12, 414–419 (2012). (10.1021/nl203733r) / Nano. Lett. by YC Lin (2012)
  26. Meric, I. et al. Graphene field-effect transistors based on boron-nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013). (10.1109/JPROC.2013.2257634) / Proc. IEEE by I Meric (2013)
  27. Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012). (10.1021/nn301675f) / ACS Nano by KK Kim (2012)
  28. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015). (10.1038/nmat4169) / Nat. Mater. by A Woessner (2015)
  29. Shiue, R. J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano. Lett. 15, 7288–7293 (2015). (10.1021/acs.nanolett.5b02368) / Nano. Lett. by RJ Shiue (2015)
  30. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano. Lett. 14, 3270–3276 (2014). (10.1021/nl5006542) / Nano. Lett. by AV Kretinin (2014)
  31. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012). (10.1038/nmat3386) / Nat. Mater. by SJ Haigh (2012)
  32. Ghorbanfekr-Kalashami, H., Vasu, K. S., Nair, R. R., Peeters, F. M. & Neek-Amal, M. Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 8, 15844 (2017). (10.1038/ncomms15844) / Nat. Commun. by H Ghorbanfekr-Kalashami (2017)
  33. Bampoulis, P., Teernstra, V. J., Lohse, D., Zandvliet, H. J. W. & Poelsema, B. Hydrophobic ice confined between graphene and MoS2. J. Phys. Chem. C. 120, 27079–27084 (2016). (10.1021/acs.jpcc.6b09812) / J. Phys. Chem. C. by P Bampoulis (2016)
  34. Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016). (10.1038/ncomms12587) / Nat. Commun. by E Khestanova (2016)
  35. Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011). (10.1021/nn201207c) / ACS Nano by JW Suk (2011)
  36. Wang, Y. et al. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011). (10.1021/nn203700w) / ACS Nano by Y Wang (2011)
  37. Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012). (10.1038/ncomms1702) / Nat. Commun. by L Gao (2012)
  38. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  39. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano. Lett. 7, 2711–2717 (2007). (10.1021/nl071168m) / Nano. Lett. by C Casiraghi (2007)
  40. Reich, S. et al. Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B 71, 205201 (2005). (10.1103/PhysRevB.71.205201) / Phys. Rev. B by S Reich (2005)
  41. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). (10.1103/PhysRevLett.97.187401) / Phys. Rev. Lett. by AC Ferrari (2006)
  42. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). (10.1038/nnano.2013.46) / Nat. Nanotechnol. by AC Ferrari (2013)
  43. Arenal, R. et al. Raman spectroscopy of single-wall boron nitride nanotubes. Nano. Lett. 6, 1812–1816 (2006). (10.1021/nl0602544) / Nano. Lett. by R Arenal (2006)
  44. Luinstra, G. A. & Borchardt, E. Material Properties of Poly(Propylene Carbonates). Synthetic Biodegradable Polymers. 29-48 (Springer, Berlin, Heidelberg, 2011). (10.1007/12_2011_126)
  45. Fan, C. F., Gagin, T., Shi, W. & Smith, K. A. Local chain dynamics of a model polycarbonate near glass transition temperature: A molecular dynamics simulation. Macromol. Theory Simul. 6, 83–102 (1997). (10.1002/mats.1997.040060107) / Macromol. Theory Simul. by CF Fan (1997)
  46. Yang, F. Viscosity measurement of polycarbonate by using a penetration viscometer. Polym. Eng. Sci. 37, 101–104 (1997). (10.1002/pen.11650) / Polym. Eng. Sci. by F Yang (1997)
  47. Pugno, N. M. & Ruoff, R. S. Quantized fracture mechanics. Philos. Mag. 84, 2829–2845 (2004). (10.1080/14786430412331280382) / Philos. Mag. by NM Pugno (2004)
  48. Carpinteri, A. & Pugno, N. M. Extension of the de Saint Venant and Kirchhoff theories to functionally graded materials. Strength, Fract. Complex. 5, 53–62 (2009). (10.3233/SFC-2009-0090) / Strength, Fract. Complex. by A Carpinteri (2009)
  49. Ke, C. et al. Mechanical peeling of free-standing single-walled carbon-nanotube bundles. Small 6, 438–445 (2010). (10.1002/smll.200901807) / Small by C Ke (2010)
  50. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015). (10.1021/acsnano.5b04258) / ACS Nano by Y Huang (2015)
  51. He, Y., Yu, W. & Ouyang, G. Interface adhesion properties of graphene membranes: thickness and temperature effect. J. Phys. Chem. C. 119, 5420 (2015). (10.1021/jp511100d) / J. Phys. Chem. C. by Y He (2015)
  52. Signetti, S., Taioli, S. & Pugno, N. M. 2D material armors showing superior impact strength of few layers. ACS Appl. Mater. Interfaces 9, 40820–40830 (2017). (10.1021/acsami.7b12030) / ACS Appl. Mater. Interfaces by S Signetti (2017)
  53. Nemanich, R. J., Solin, S. A. & Martin, R. M. Light scattering study of boron nitride microcrystals. Phys. Rev. B 23, 6348–6356 (1981). (10.1103/PhysRevB.23.6348) / Phys. Rev. B by RJ Nemanich (1981)
  54. Cancado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano. Lett. 11, 3190–3196 (2011). (10.1021/nl201432g) / Nano. Lett. by LG Cancado (2011)
  55. Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009). (10.1103/PhysRevB.80.165413) / Phys. Rev. B by DM Basko (2009)
  56. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). (10.1038/nnano.2008.67) / Nat. Nanotechnol. by A Das (2008)
  57. Neumann, C. et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 6, 8429 (2015). (10.1038/ncomms9429) / Nat. Commun. by C Neumann (2015)
  58. Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007). (10.1103/PhysRevLett.98.166802) / Phys. Rev. Lett. by J Yan (2007)
  59. Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007). (10.1038/nmat1846) / Nat. Mater. by S Pisana (2007)
  60. Casiraghi, C., Pisana, S., Novoselov, K. S., Geim, A. K. & Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007). (10.1063/1.2818692) / Appl. Phys. Lett. by C Casiraghi (2007)
  61. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004). (10.1103/PhysRevLett.93.185503) / Phys. Rev. Lett. by S Piscanec (2004)
  62. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B - Condens. Matter Mater. Phys. 79, 205433 (2009). (10.1103/PhysRevB.79.205433) / Phys. Rev. B - Condens. Matter Mater. Phys. by TMG Mohiuddin (2009)
  63. Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012). (10.1038/ncomms2022) / Nat. Commun. by JE Lee (2012)
  64. Zabel, J. et al. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano. Lett. 12, 617–621 (2012). (10.1021/nl203359n) / Nano. Lett. by J Zabel (2012)
  65. Proctor, J. E. et al. High-pressure Raman spectroscopy of graphene. Phys. Rev. B - Condens. Matter Mater. Phys. 80, 073408 (2009). (10.1103/PhysRevB.80.073408) / Phys. Rev. B - Condens. Matter Mater. Phys. by JE Proctor (2009)
  66. Yoon, D., Son, Y. W. & Cheong, H. Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys. Rev. Lett. 106, 155502 (2011). (10.1103/PhysRevLett.106.155502) / Phys. Rev. Lett. by D Yoon (2011)
  67. Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009). (10.1038/nnano.2009.177) / Nat. Nanotechnol. by J Xia (2009)
  68. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008). (10.1103/PhysRevLett.100.016602) / Phys. Rev. Lett. by SV Morozov (2008)
  69. Park, C. H. et al. Electron-phonon interactions and the intrinsic electrical resistivity of graphene. Nano. Lett. 14, 1113–1119 (2014). (10.1021/nl402696q) / Nano. Lett. by CH Park (2014)
  70. Sohier, T. et al. Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation. Phys. Rev. B - Condens. Matter Mater. Phys. 90, 125414 (2014). (10.1103/PhysRevB.90.125414) / Phys. Rev. B - Condens. Matter Mater. Phys. by T Sohier (2014)
  71. Hwang, E. H. & Sarma, S. Das. Acoustic phonon scattering limited carrier mobility in 2D extrinsic graphene. Phys. Rev. B 77, 115449 (2007). (10.1103/PhysRevB.77.115449) / Phys. Rev. B by EH Hwang (2007)
  72. Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 1–13 (2014). / Phys. Rev. X by NJG Couto (2014)
  73. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). (10.1016/j.ssc.2008.02.024) / Solid State Commun. by KI Bolotin (2008)
  74. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008). (10.1038/nnano.2008.199) / Nat. Nanotechnol. by X Du (2008)
  75. Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008). (10.1038/nphys781) / Nat. Phys. by J Martin (2008)
  76. Gibertini, M., Tomadin, A., Guinea, F., Katsnelson, M. I. & Polini, M. Electron-hole puddles in the absence of charged impurities. Phys. Rev. B - Condens. Matter Mater. Phys. 85, 201405 (2012). (10.1103/PhysRevB.85.201405) / Phys. Rev. B - Condens. Matter Mater. Phys. by M Gibertini (2012)
  77. Mayorov, A. S. et al. How close can one approach the dirac point in graphene experimentally? Nano. Lett. 12, 4629–4634 (2012). (10.1021/nl301922d) / Nano. Lett. by AS Mayorov (2012)
  78. Burson, K. M. et al. Direct imaging of charged impurity density in common graphene substrates. Nano. Lett. 13, 3576–3580 (2013). (10.1021/nl4012529) / Nano. Lett. by KM Burson (2013)
  79. Takagaki, Y. et al. Nonlocal quantum transport in narrow multibranched electron wave guide of GaAs-AlGaAs. Solid State Commun. 68, 1051–1054 (1988). (10.1016/0038-1098(88)90820-4) / Solid State Commun. by Y Takagaki (1988)
  80. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303, 525–529 (2007). (10.1016/j.jcrysgro.2006.12.061) / J. Cryst. Growth by T Taniguchi (2007)
Dates
Type When
Created 6 years, 8 months ago (Dec. 13, 2018, 9:20 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 4:38 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:25 a.m.)
Issued 6 years, 8 months ago (Dec. 19, 2018)
Published 6 years, 8 months ago (Dec. 19, 2018)
Published Online 6 years, 8 months ago (Dec. 19, 2018)
Funders 0

None

@article{Purdie_2018, title={Cleaning interfaces in layered materials heterostructures}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-07558-3}, DOI={10.1038/s41467-018-07558-3}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Purdie, D. G. and Pugno, N. M. and Taniguchi, T. and Watanabe, K. and Ferrari, A. C. and Lombardo, A.}, year={2018}, month=dec }