Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, impeding a comprehensive perspective on the effects of temperature and composition on materials stability and synthesizability. Here, we use the SISSO (sure independence screening and sparsifying operator) approach to identify a simple and accurate descriptor to predict G for stoichiometric inorganic compounds with ~50 meV atom−1 (~1 kcal mol−1) resolution, and with minimal computational cost, for temperatures ranging from 300–1800 K. We then apply this descriptor to ~30,000 known materials curated from the Inorganic Crystal Structure Database (ICSD). Using the resulting predicted thermochemical data, we generate thousands of temperature-dependent phase diagrams to provide insights into the effects of temperature and composition on materials synthesizability and stability and to establish the temperature-dependent scale of metastability for inorganic compounds.

Bibliography

Bartel, C. J., Millican, S. L., Deml, A. M., Rumptz, J. R., Tumas, W., Weimer, A. W., Lany, S., Stevanović, V., Musgrave, C. B., & Holder, A. M. (2018). Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nature Communications, 9(1).

Authors 10
  1. Christopher J. Bartel (first)
  2. Samantha L. Millican (additional)
  3. Ann M. Deml (additional)
  4. John R. Rumptz (additional)
  5. William Tumas (additional)
  6. Alan W. Weimer (additional)
  7. Stephan Lany (additional)
  8. Vladan Stevanović (additional)
  9. Charles B. Musgrave (additional)
  10. Aaron M. Holder (additional)
References 58 Referenced 225
  1. Stanley Smith, C. Materials and the development of civilization and science: empiricism and esthetic selection led to discovery of many properties on which material science is based. Science 148, 908–917 (1965). (10.1126/science.148.3672.908) / Science by C Stanley Smith (1965)
  2. Hemminger, J. C., Sarrao, J., Crabtree, G., Flemming, G. & Ratner, M. Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science 1–78 (USDOE Office of Science, 2015). (10.2172/1283188)
  3. Holder, A. M. et al. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Sci. Adv. 3, e1700270 (2017). (10.1126/sciadv.1700270) / Sci. Adv. by AM Holder (2017)
  4. De Yoreo, J. Synthesis Science for Energy Relevant Technology (U.S. Department of Energy Office of Science, 2016).
  5. Siol, S. et al. Negative-pressure polymorphs made by heterostructural alloying. Sci. Adv. 4, 1–7 (2018). (10.1126/sciadv.aaq1442) / Sci. Adv. by S Siol (2018)
  6. Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016). (10.1038/natrevmats.2015.4) / Nat. Rev. Mater. by A Jain (2016)
  7. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191 (2013). (10.1038/nmat3568) / Nat. Mater. by S Curtarolo (2013)
  8. Draxl, C. & Scheffler, M. NOMAD: the FAIR concept for big-data-driven materials science. Preprint at https://arxiv.org/abs/1805.05039 (2018).
  9. Zebarjadi, M., Esfarjani, K., Dresselhaus, M., Ren, Z. & Chen, G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147–5162 (2012). (10.1039/C1EE02497C) / Energy Environ. Sci. by M Zebarjadi (2012)
  10. Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015). (10.1126/science.aab3987) / Science by C Duan (2015)
  11. Muhich, C. L. et al. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 341, 540 (2013). (10.1126/science.1239454) / Science by CL Muhich (2013)
  12. Dunstan, M. T. et al. Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture. Energy Environ. Sci. 9, 1346–1360 (2016). (10.1039/C5EE03253A) / Energy Environ. Sci. by MT Dunstan (2016)
  13. Stoffel, R. P., Wessel, C., Lumey, M.-W. & Dronskowski, R. Ab initio thermochemistry of solid-state materials. Angew. Chem. Int. Ed. 49, 5242–5266 (2010). (10.1002/anie.200906780) / Angew. Chem. Int. Ed. by RP Stoffel (2010)
  14. Huang, L.-F., Lu, X.-Z., Tennessen, E. & Rondinelli, J. M. An efficient ab-initio quasiharmonic approach for the thermodynamics of solids. Comput. Mater. Sci. 120, 84–93 (2016). (10.1016/j.commatsci.2016.04.012) / Comput. Mater. Sci. by LF Huang (2016)
  15. Nath, P. et al. High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation. Comput. Mater. Sci. 125, 82–91 (2016). (10.1016/j.commatsci.2016.07.043) / Comput. Mater. Sci. by P Nath (2016)
  16. Kyoto University Phonon Database. http://phonondb.mtl.kyoto-u.ac.jp/ph20151124/index.html (2015).
  17. Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762–3767 (2010). (10.1021/cm100795d) / Chem. Mater. by G Hautier (2010)
  18. Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014). (10.1103/PhysRevB.89.094104) / Phys. Rev. B by B Meredig (2014)
  19. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015). (10.1103/PhysRevLett.114.105503) / Phys. Rev. Lett. by LM Ghiringhelli (2015)
  20. Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. 92, 094306 (2015).
  21. Nosengo, N. & Ceder, G. Can artificial intelligence create the next wonder material? Nature 533, 22–25 (2016). (10.1038/533022a) / Nature by N Nosengo (2016)
  22. Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017). (10.1038/ncomms15679) / Nature Communications by Olexandr Isayev (2017)
  23. Legrain, F., Carrete, J., van Roekeghem, A., Curtarolo, S. & Mingo, N. How chemical composition alone can predict vibrational free energies and entropies of solids. Chem. Mater. 29, 6220–6227 (2017). (10.1021/acs.chemmater.7b00789) / Chem. Mater. by F Legrain (2017)
  24. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Preprint at https://arxiv.org/abs/1801.0770 (2018).
  25. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009). (10.1126/science.1165893) / Science by M Schmidt (2009)
  26. Makarov, D. E. & Metiu, H. Using genetic programming to solve the schrödinger equation. J. Phys. Chem. A 104, 8540–8545 (2000). (10.1021/jp000695q) / J. Phys. Chem. A by DE Makarov (2000)
  27. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016). (10.1073/pnas.1517384113) / Proc. Natl Acad. Sci. USA by SL Brunton (2016)
  28. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 1–11 (2018). / Phys. Rev. Mater. by R Ouyang (2018)
  29. Bale, C. W. et al. FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35–53 (2016). (10.1016/j.calphad.2016.05.002) / Calphad by CW Bale (2016)
  30. Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012). (10.1103/PhysRevB.85.115104) / Phys. Rev. B by V Stevanović (2012)
  31. Jain, A. et al. Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 84, 045115 (2011). (10.1103/PhysRevB.84.045115) / Phys. Rev. B by A Jain (2011)
  32. Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015). (10.1038/npjcompumats.2015.10) / npj Comput. Mater. by S Kirklin (2015)
  33. Lany, S. Semiconductor thermochemistry in density functional calculations. Phys. Rev. B 78, 245207 (2008). (10.1103/PhysRevB.78.245207) / Phys. Rev. B by S Lany (2008)
  34. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015). (10.1016/j.scriptamat.2015.07.021) / Scr. Mater. by A Togo (2015)
  35. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014). (10.1103/RevModPhys.86.253) / Rev. Mod. Phys. by C Freysoldt (2014)
  36. Jenkins, H. D. B. & Glasser, L. Standard absolute entropy, values from volume or density. 1. Inorganic materials. Inorg. Chem. 42, 8702–8708 (2003). (10.1021/ic030219p) / Inorg. Chem. by HDB Jenkins (2003)
  37. Fultz, B. Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247–352 (2010). (10.1016/j.pmatsci.2009.05.002) / Prog. Mater. Sci. by B Fultz (2010)
  38. Zhang, Y. et al. Efficient first-principles prediction of solid stability: towards chemical accuracy. NPJ. Comput. Mater. 4, 9 (2018). (10.1038/s41524-018-0065-z) / npj Comput. Mater. by Y Zhang (2018)
  39. Zhao, L.-D., Chang, C., Tan, G. & Kanatzidis, M. G. SnSe: a remarkable new thermoelectric material. Energy Environ. Sci. 9, 3044–3060 (2016). (10.1039/C6EE01755J) / Energy Environ. Sci. by LD Zhao (2016)
  40. Steinfeld, A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int. J. Hydrog. Energy 27, 611–619 (2002). (10.1016/S0360-3199(01)00177-X) / Int. J. Hydrog. Energy by A Steinfeld (2002)
  41. L’vov, B. V. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim. Acta 360, 109–120 (2000). (10.1016/S0040-6031(00)00540-2) / Thermochim. Acta by BV L’vov (2000)
  42. Rodriguez, J. A. & Hrbek, J. Interaction of sulfur with well-defined metal and oxide surfaces: unraveling the mysteries behind catalyst poisoning and desulfurization. Acc. Chem. Res. 32, 719–728 (1999). (10.1021/ar9801191) / Acc. Chem. Res. by JA Rodriguez (1999)
  43. Bertrand, G., Mahdjoub, H. & Meunier, C. A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings. Surf. Coat. Technol. 126, 199–209 (2000). (10.1016/S0257-8972(00)00527-2) / Surf. Coat. Technol. by G Bertrand (2000)
  44. Michalsky, R., Pfromm, P. H. & Steinfeld, A. Rational design of metal nitride redox materials for solar-driven ammonia synthesis. Interface Focus 5, 20140084 (2015). (10.1098/rsfs.2014.0084) / Interface Focus by R Michalsky (2015)
  45. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). (10.1063/1.4812323) / APL Mater. by A Jain (2013)
  46. Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016). (10.1126/sciadv.1600225) / Sci. Adv. by W Sun (2016)
  47. Hautier, G. et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011). (10.1021/cm200949v) / Chem. Mater. by G Hautier (2011)
  48. Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4. https://doi.org/10.1126/sciadv.aaq0148 (2018). (10.1126/sciadv.aaq0148) / Science Advances by Muratahan Aykol (2018)
  49. Mueller, T., Hautier, G., Jain, A. & Ceder, G. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem. Mater. 23, 3854–3862 (2011). (10.1021/cm200753g) / Chem. Mater. by T Mueller (2011)
  50. Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017). (10.1103/PhysRevLett.118.106101) / Phys. Rev. Lett. by M Ashton (2017)
  51. Sun, W. et al. Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem. Mater. 29, 6936–6946 (2017). (10.1021/acs.chemmater.7b02399) / Chemistry of Materials by Wenhao Sun (2017)
  52. Shoemaker, D. P. et al. In situ studies of a platform for metastable inorganic crystal growth and materials discovery. Proc. Natl Acad. Sci. USA 111, 10922–10927 (2014). (10.1073/pnas.1406211111) / Proc. Natl Acad. Sci. USA by DP Shoemaker (2014)
  53. Gopalakrishnan, J. ChimieDouce Approaches to the synthesis of metastable oxide materials. Chem. Mater. 7, 1265–1275 (1995). (10.1021/cm00055a001) / Chem. Mater. by JChimieDouce Gopalakrishnan (1995)
  54. Aykol, M. et al. Network analysis of synthesizable materials discovery. Preprint at https://arxiv.org/abs/1806.05772 (2018).
  55. Balachandran, P. V., Kowalski, B., Sehirlioglu, A. & Lookman, T. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun. 9, 1668 (2018). (10.1038/s41467-018-03821-9) / Nat. Commun. by PV Balachandran (2018)
  56. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4. https://doi.org/10.1126/sciadv.aaq1566 (2018). (10.1126/sciadv.aaq1566) / Science Advances by Fang Ren (2018)
  57. Arca, E. et al. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides. J. Am. Chem. Soc. 140, 4293–4301 (2018). (10.1021/jacs.7b12861) / J. Am. Chem. Soc. by E Arca (2018)
  58. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013). (10.1016/j.commatsci.2012.10.028) / Comput. Mater. Sci. by SP Ong (2013)
Dates
Type When
Created 6 years, 10 months ago (Oct. 3, 2018, 6:24 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 1:49 p.m.)
Indexed 1 hour, 10 minutes ago (Aug. 27, 2025, 12:29 p.m.)
Issued 6 years, 10 months ago (Oct. 9, 2018)
Published 6 years, 10 months ago (Oct. 9, 2018)
Published Online 6 years, 10 months ago (Oct. 9, 2018)
Funders 2
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards2
    1. DE-AC36-08GO28308
    2. DE-EE0008088
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards3
    1. CBET-1433521
    2. CBET-1806079
    3. DGE 114803

@article{Bartel_2018, title={Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-06682-4}, DOI={10.1038/s41467-018-06682-4}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Bartel, Christopher J. and Millican, Samantha L. and Deml, Ann M. and Rumptz, John R. and Tumas, William and Weimer, Alan W. and Lany, Stephan and Stevanović, Vladan and Musgrave, Charles B. and Holder, Aaron M.}, year={2018}, month=oct }