Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractInfrared light detection and sensing is deeply embedded in modern technology and human society and its development has always been benefitting from the discovery of various photoelectric materials. The rise of two-dimensional materials, thanks to their distinct electronic structures, extreme dimensional confinement and strong light–matter interactions, provides a material platform for next-generation infrared photodetection. Ideal infrared detectors should have fast respond, high sensitivity and air-stability, which are rare to meet at the same time in one two-dimensional material. Herein we demonstrate an infrared photodetector based on two-dimensional Bi2O2Se crystal, whose main characteristics are outstanding in the whole two-dimensional family: high sensitivity of 65 AW−1 at 1200 nm and ultrafast photoresponse of ~1 ps at room temperature, implying an intrinsic material-limited bandwidth up to 500 GHz. Such great performance is attributed to the suitable electronic bandgap and high carrier mobility of two-dimensional oxyselenide.

Bibliography

Yin, J., Tan, Z., Hong, H., Wu, J., Yuan, H., Liu, Y., Chen, C., Tan, C., Yao, F., Li, T., Chen, Y., Liu, Z., Liu, K., & Peng, H. (2018). Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 9(1).

Authors 14
  1. Jianbo Yin (first)
  2. Zhenjun Tan (additional)
  3. Hao Hong (additional)
  4. Jinxiong Wu (additional)
  5. Hongtao Yuan (additional)
  6. Yujing Liu (additional)
  7. Cheng Chen (additional)
  8. Congwei Tan (additional)
  9. Fengrui Yao (additional)
  10. Tianran Li (additional)
  11. Yulin Chen (additional)
  12. Zhongfan Liu (additional)
  13. Kaihui Liu (additional)
  14. Hailin Peng (additional)
References 36 Referenced 281
  1. Rogalski, A. Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002). (10.1016/S1350-4495(02)00140-8) / Infrared Phys. Technol. by A Rogalski (2002)
  2. Taylor, R. et al. Improved platinum silicide IRCCD focal plane. Proc. SPIE 217, 103–110 (1980). (10.1117/12.958482) / Proc. SPIE by R Taylor (1980)
  3. Huang, Z. H. et al. Microstructured silicon photodetector. Appl. Phys. Lett. 89, 3506 (2006). / Appl. Phys. Lett. by ZH Huang (2006)
  4. Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017). (10.1038/nature21050) / Nature by V Adinolfi (2017)
  5. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006). (10.1038/nature04855) / Nature by G Konstantatos (2006)
  6. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  7. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). (10.1126/science.1235547) / Science by L Britnell (2013)
  8. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). (10.1038/nnano.2009.292) / Nat. Nanotechnol. by FN Xia (2009)
  9. Yin, J. B. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 7, 10699 (2016). (10.1038/ncomms10699) / Nat. Commun. by JB Yin (2016)
  10. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon 10, 216–226 (2016). (10.1038/nphoton.2015.282) / Nat. Photon by KF Mak (2016)
  11. Koski, K. J. & Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 7, 3739–3743 (2013). (10.1021/nn4022422) / ACS Nano by KJ Koski (2013)
  12. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). (10.1038/nnano.2014.215) / Nat. Nanotechnol. by FHL Koppens (2014)
  13. Goossens, S. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photon 11, 366–371 (2017). (10.1038/nphoton.2017.75) / Nat. Photon by S Goossens (2017)
  14. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012). (10.1038/nnano.2011.243) / Nat. Nanotechnol. by D Sun (2012)
  15. Li, L. K. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). (10.1038/nnano.2014.35) / Nat. Nanotechnol. by LK Li (2014)
  16. Yuan, H. T. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015). (10.1038/nnano.2015.112) / Nat. Nanotechnol. by HT Yuan (2015)
  17. Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016). (10.1021/acs.nanolett.6b01977) / Nano Lett. by QS Guo (2016)
  18. Reich, E. S. Phosphorene excites materials scientists. Nature 506, 19 (2014). (10.1038/506019a) / Nature by ES Reich (2014)
  19. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011). (10.1021/nl2011388) / Nano Lett. by A Urich (2011)
  20. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016). (10.1038/nnano.2015.227) / Nat. Nanotechnol. by M Massicotte (2016)
  21. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon 4, 297–301 (2010). (10.1038/nphoton.2010.40) / Nat. Photon by T Mueller (2010)
  22. Wu, J. X. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017). (10.1038/nnano.2017.43) / Nat. Nanotechnol. by JX Wu (2017)
  23. Wu, J. X. et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 17, 3021–3026 (2017). (10.1021/acs.nanolett.7b00335) / Nano Lett. by JX Wu (2017)
  24. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013). (10.1021/nl4001037) / Nano Lett. by M Freitag (2013)
  25. Freitag, M., Low, T., Xia, F. N. & Avouris, P. Photoconductivity of biased graphene. Nat. Photon. 7, 53–59 (2013). (10.1038/nphoton.2012.314) / Nat. Photon. by M Freitag (2013)
  26. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). (10.1038/nnano.2013.100) / Nat. Nanotechnol. by O Lopez-Sanchez (2013)
  27. Abderrahmane, A. et al. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 25, 365202 (2014). (10.1088/0957-4484/25/36/365202) / Nanotechnology by A Abderrahmane (2014)
  28. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. F. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nat. Nanotechnol. by BWH Baugher (2014)
  29. Perea-Lopez, N. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511–5517 (2013). (10.1002/adfm.201300760) / Adv. Funct. Mater. by N Perea-Lopez (2013)
  30. Yariv, A. and Yeh, P. (eds) in Photonics: Optical Electronics in Modern Communications 5th edn 425–427 (Oxford University Press, New York, 1997)
  31. Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). (10.1038/nnano.2012.60) / Nat. Nanotechnol. by G Konstantatos (2012)
  32. Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon 10, 227–238 (2016). (10.1038/nphoton.2016.15) / Nat. Photon by ZP Sun (2016)
  33. Gabor, N. M., Zhong, Z. H., Bosnick, K. & McEuen, P. L. Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p-i-n photodiodes. Phys. Rev. Lett. 108, 087404 (2012). (10.1103/PhysRevLett.108.087404) / Phys. Rev. Lett. by NM Gabor (2012)
  34. Diels, J. C. & Rudolph, W. Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic Press, San Diego, 2006). (10.1016/B978-012215493-5/50003-3)
  35. Wang, Q. S. et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett. 17, 834–841 (2017). (10.1021/acs.nanolett.6b04084) / Nano Lett. by QS Wang (2017)
  36. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014). (10.1021/nl5008085) / Nano Lett. by M Buscema (2014)
Dates
Type When
Created 7 years ago (Aug. 13, 2018, 9:44 a.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 11:48 a.m.)
Indexed 10 hours, 37 minutes ago (Aug. 29, 2025, 6:29 a.m.)
Issued 7 years ago (Aug. 17, 2018)
Published 7 years ago (Aug. 17, 2018)
Published Online 7 years ago (Aug. 17, 2018)
Funders 0

None

@article{Yin_2018, title={Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-05874-2}, DOI={10.1038/s41467-018-05874-2}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Yin, Jianbo and Tan, Zhenjun and Hong, Hao and Wu, Jinxiong and Yuan, Hongtao and Liu, Yujing and Chen, Cheng and Tan, Congwei and Yao, Fengrui and Li, Tianran and Chen, Yulin and Liu, Zhongfan and Liu, Kaihui and Peng, Hailin}, year={2018}, month=aug }