Abstract
AbstractThe FeMo-cofactor of nitrogenase, a metal–sulfur cluster that contains eight transition metals, promotes the conversion of dinitrogen into ammonia when stored in the protein. Although various metal–sulfur clusters have been synthesized over the past decades, their use in the activation of N2 has remained challenging, and even the FeMo-cofactor extracted from nitrogenase is not able to reduce N2. Herein, we report the activation of N2 by a metal–sulfur cluster that contains molybdenum and titanium. An N2 moiety bridging two [Mo3S4Ti] cubes is converted into NH3 and N2H4 upon treatment with Brønsted acids in the presence of a reducing agent.
Authors
6
- Yasuhiro Ohki (first)
- Keisuke Uchida (additional)
- Mizuki Tada (additional)
- Roger E. Cramer (additional)
- Takashi Ogura (additional)
- Takehiro Ohta (additional)
References
43
Referenced
77
-
Krebs, B. & Henkel, G. Transition-metal thiolates: from molecular fragments of sulfide solids to models for active centers in biomolecules. Angew. Chem. Int. Ed. Engl. 30, 769–788 (1991).
(
10.1002/anie.199107691
) / Angew. Chem. Int. Ed. Engl. by B Krebs (1991) -
Holm, R. H. & Lo, W. Structural conversions of synthetic and protein-bound iron-sulfur clusters. Chem. Rev. 116, 13685–13713 (2016).
(
10.1021/acs.chemrev.6b00276
) / Chem. Rev. by RH Holm (2016) -
Hoffman, B. M., Lukoyanov, D., Yang, Z. –Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).
(
10.1021/cr400641x
) / Chem. Rev. by BM Hoffman (2014) -
Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).
(
10.1126/science.1214025
) / Science by T Spatzal (2011) -
Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334, 974–977 (2011).
(
10.1126/science.1206445
) / Science by KM Lancaster (2011) -
Shah, V. K. & Brill, W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl Acad. Sci. USA 74, 3249–3253 (1977).
(
10.1073/pnas.74.8.3249
) / Proc. Natl Acad. Sci. USA by VK Shah (1977) -
Smith, B. E. et al. Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185–186, 669–687 (1999).
(
10.1016/S0010-8545(99)00017-X
) / Coord. Chem. Rev. by BE Smith (1999) -
Lee, C. C., Hu, Y. & Ribbe, M. W. ATP-independent formation of hydrocarbons catalyzed by isolated nitrogenase cofactors. Angew. Chem. Int. Ed. 51, 1947–1949 (2012).
(
10.1002/anie.201108916
) / Angew. Chem. Int. Ed. by CC Lee (2012) -
Hu, Y. & Ribbe, M. W. Nitrogenases—a tale of carbon atom(s). Angew. Chem. Int. Ed. 55, 8216–8226 (2016).
(
10.1002/anie.201600010
) / Angew. Chem. Int. Ed. by Y Hu (2016) -
Tanifuji, K. et al. Structure and reactivity of an asymmetric synthetic mimic of nitrogenase cofactor. Angew. Chem. Int. Ed. 55, 15633–15636 (2016).
(
10.1002/anie.201608806
) / Angew. Chem. Int. Ed. by K Tanifuji (2016) -
Dörr, M. et al. A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces. Angew. Chem. Int. Ed. 42, 1540–1543 (2003).
(
10.1002/anie.200250371
) / Angew. Chem. Int. Ed. by M Dörr (2003) -
Tanaka, K., Hozumi, Y. & Tanaka, T. Dinitrogen fixation catalyzed by the reduced species of [Fe4S4(SPh)4]2– and [Mo2Fe6S8(SPh)9]3–. Chem. Lett. 11, 1203–1206 (1982).
(
10.1246/cl.1982.1203
) / Chem. Lett. by K Tanaka (1982) -
Banerjee, A. et al. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 137, 2030–2034 (2015).
(
10.1021/ja512491v
) / J. Am. Chem. Soc. by A Banerjee (2015) -
Liu, J. et al. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl Acad. Sci. USA 113, 5530–5535 (2016).
(
10.1073/pnas.1605512113
) / Proc. Natl Acad. Sci. USA by J Liu (2016) -
Čorić, I. et al. Binding of dinitrogen to an iron-sulfur carbon site. Nature 526, 96–99 (2015).
(
10.1038/nature15246
) / Nature by I Čorić (2015) -
Takaoka, A., Mankad, N. P. & Peters, J. C. Dinitrogen complexes of sulfur-ligated iron. J. Am. Chem. Soc. 133, 8440–8443 (2011).
(
10.1021/ja2020907
) / J. Am. Chem. Soc. by A Takaoka (2011) -
Creutz, S. E. & Peters, J. C. Diiron bridged-thiolate complexes that bind N2 at the FeIIFeII, FeIIFeI, and FeIFeI redox states. J. Am. Chem. Soc. 137, 7310–7313 (2015).
(
10.1021/jacs.5b04738
) / J. Am. Chem. Soc. by SE Creutz (2015) -
Mori, H., Seino, H., Hidai, M. & Mizobe, Y. Isolation of a cubane-type metal sulfido cluster with a molecular nitrogen ligand. Angew. Chem. Int. Ed. 46, 5431–5434 (2007).
(
10.1002/anie.200701044
) / Angew. Chem. Int. Ed. by H Mori (2007) -
Lee, S. C. & Holm, R. H. The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135–1157 (2004).
(
10.1021/cr0206216
) / Chem. Rev. by SC Lee (2004) -
Ohki, Y. & Tatsumi, K. New synthetic routes to metal-sulfur clusters relevant to the nitrogenase metallo-clusters. Z. Anorg. Allg. Chem. 639, 1340–1349 (2013).
(
10.1002/zaac.201300081
) / Z. Anorg. Allg. Chem. by Y Ohki (2013) -
Zhang, Y., Zuo, J. L., Zhou, H. C. & Holm, R. H. Rearrangement of symmetrical dicubane clusters into topological analogues of the P cluster of nitrogenase: nature’s choice? J. Am. Chem. Soc. 124, 14292–14293 (2002).
(
10.1021/ja0279702
) / J. Am. Chem. Soc. by Y Zhang (2002) -
Ohki, Y., Ikagawa, Y. & Tatsumi, K. Synthesis of new [8Fe-7S] clusters: a topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases. J. Am. Chem. Soc. 129, 10457–10465 (2007).
(
10.1021/ja072256b
) / J. Am. Chem. Soc. by Y Ohki (2007) -
Ohki, Y. et al. Synthesis, structures, and electronic properties of [8Fe-7S] cluster complexes modeling the nitrogenase P-cluster. J. Am. Chem. Soc. 131, 13168–13178 (2009).
(
10.1021/ja9055036
) / J. Am. Chem. Soc. by Y Ohki (2009) -
Cramer, R. E., Yamada, K., Kawaguchi, H. & Tatsumi, K. Synthesis and structure of a Mo3S4 cluster complex with seven cluster electrons. Inorg. Chem. 35, 1743–1746 (1996).
(
10.1021/ic951103z
) / Inorg. Chem. by RE Cramer (1996) -
Fryzuk, M. D. & Johnson, S. A. The continuing story of dinitrogen activation. Coord. Chem. Rev. 200-202, 379–409 (2000).
(
10.1016/S0010-8545(00)00264-2
) / Coord. Chem. Rev. by MD Fryzuk (2000) -
Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).
(
10.1126/science.1238663
) / Science by T Shima (2013) -
Wang, B. et al. Dinitrogen activation by dihydrogen and a PNP-ligated titanium complex. J. Am. Chem. Soc. 139, 1818–1821 (2017).
(
10.1021/jacs.6b13323
) / J. Am. Chem. Soc. by B Wang (2017) -
Shibahara, T. Syntheses of sulphur-bridged molybdenum and tungsten coordination compounds. Coord. Chem. Rev. 123, 73–147 (1993).
(
10.1016/0010-8545(93)85053-7
) / Coord. Chem. Rev. by T Shibahara (1993) -
Hidai, M., Kuwata, S. & Mizobe, Y. Synthesis and reactivities of cubane-type sulfido clusters containing noble metals. Acc. Chem. Res. 33, 46–52 (2000).
(
10.1021/ar990016y
) / Acc. Chem. Res. by M Hidai (2000) -
Baker, R. J. et al. Early transition metal complexes of triphosphorus macrocycles. Eur. J. Inorg. Chem. 1975–1984 (2002).
(
10.1002/1099-0682(200208)2002:8<1975::AID-EJIC1975>3.0.CO;2-I
) -
Duchateau, R., Gambarotta, S., Beydoun, N. & Bensimon, C. Side-on versus end-on coordination of dinitrogen to titanium(II) and mixed-valence titanium(I)/titanium(II) amido complexes. J. Am. Chem. Soc. 113, 8986–8988 (1991).
(
10.1021/ja00023a080
) / J. Am. Chem. Soc. by R Duchateau (1991) -
Chomitz, W. A., Sutton, A. D., Krinsky, J. L. & Arnold, J. Synthesis and reactivity of titanium and zirconium complexes supported by a multidentate monoanionic [N2P2] ligand. Organometallics 28, 3338–3349 (2009).
(
10.1021/om8011932
) / Organometallics by WA Chomitz (2009) -
Nakanishi, Y., Ishida, Y. & Kawaguchi, H. Nitrogen-carbon bond formation by reactions of a titanium-potassium dinitrogen complex with carbon dioxide, tert-butyl isocyanate, and phenylallene. Angew. Chem. Int. Ed. 56, 9193–9197 (2017).
(
10.1002/anie.201704286
) / Angew. Chem. Int. Ed. by Y Nakanishi (2017) -
Almenningen, A., Anfinsen, I. M. & Haaland, A. An electron diffraction study of azomethane, CH3NNCH3. Acta Chem. Scand. 24, 1230–1234 (1970).
(
10.3891/acta.chem.scand.24-1230
) / Acta Chem. Scand. by A Almenningen (1970) -
Pearce, R. A. R., Levin, I. W. & Harris, W. C. Raman spectra and vibrational potential function of polycrystalline azomethane and azomethane-d6. J. Chem. Phys. 59, 1209–1216 (1973).
(
10.1063/1.1680170
) / J. Chem. Phys. by RAR Pearce (1973) -
Gulaczyk, I., Kreglewski, M. & Valentin, A. The N-N stretching band of hydrazine. J. Mol. Spectr. 220, 132–136 (2003).
(
10.1016/S0022-2852(03)00106-1
) / J. Mol. Spectr. by I Gulaczyk (2003) -
Chaney, A. L. & Marbach, E. P. Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962).
(
10.1093/clinchem/8.2.130
) / Clin. Chem. by AL Chaney (1962) -
Watt, G. W. & Chrisp, J. D. A spectrophotometric method for the determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952).
(
10.1021/ac60072a044
) / Anal. Chem. by GW Watt (1952) -
Liu, J. et al. Metalloproteins containing cytochrome, iron−sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).
(
10.1021/cr400479b
) / Chem. Rev. by J Liu (2014) -
Ohta, S. & Ohki, Y. Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coord. Chem. Rev. 338, 207–225 (2017).
(
10.1016/j.ccr.2017.02.018
) / Coord. Chem. Rev. by S Ohta (2017) -
Jones, N. A., Liddle, S. T., Wilson, C. & Arnold, P. L. Titanium(III) alkoxy-N-heterocyclic carbenes and a safe, low-cost route to TiCl3(THF)3. Organometallics 26, 755–757 (2007).
(
10.1021/om060486d
) / Organometallics by NA Jones (2007) -
Takei, I. et al. Synthesis of a new family of heterobimetallic tetranuclear sulfido clusters with Mo2Ni2Sx (x = 4 or 5) or Mo3M’S4 (M’ = Ru, Ni, Pd) cores. Organometallics 22, 1790–1792 (2003).
(
10.1021/om021033l
) / Organometallics by I Takei (2003) -
Bergbreiter, D. E. & Killough, J. M. Reactions of potassium-graphite. J. Am. Chem. Soc. 100, 2126–2134 (1978).
(
10.1021/ja00475a025
) / J. Am. Chem. Soc. by DE Bergbreiter (1978)
@article{Ohki_2018, title={N2 activation on a molybdenum–titanium–sulfur cluster}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-05630-6}, DOI={10.1038/s41467-018-05630-6}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ohki, Yasuhiro and Uchida, Keisuke and Tada, Mizuki and Cramer, Roger E. and Ogura, Takashi and Ohta, Takehiro}, year={2018}, month=aug }