Abstract
AbstractSystems simultaneously exhibiting superconductivity and spin–orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin–orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin–orbit coupling in the atomic layer limit, metallic 2H-TaS2 and 2H-NbSe2. We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin–orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.
Bibliography
de la Barrera, S. C., Sinko, M. R., Gopalan, D. P., Sivadas, N., Seyler, K. L., Watanabe, K., Taniguchi, T., Tsen, A. W., Xu, X., Xiao, D., & Hunt, B. M. (2018). Tuning Ising superconductivity with layer and spinâorbit coupling in two-dimensional transition-metal dichalcogenides. Nature Communications, 9(1).
Authors
11
- Sergio C. de la Barrera (first)
- Michael R. Sinko (additional)
- Devashish P. Gopalan (additional)
- Nikhil Sivadas (additional)
- Kyle L. Seyler (additional)
- Kenji Watanabe (additional)
- Takashi Taniguchi (additional)
- Adam W. Tsen (additional)
- Xiaodong Xu (additional)
- Di Xiao (additional)
- Benjamin M. Hunt (additional)
References
41
Referenced
333
-
Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).
(
10.1103/PhysRevLett.9.266
) / Phys. Rev. Lett. by AM Clogston (1962) -
Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).
(
10.1063/1.1777362
) / Appl. Phys. Lett. by BS Chandrasekhar (1962) -
Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).
(
10.1126/science.aab2277
) / Science by JM Lu (2015) -
Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).
(
10.1038/nphys3538
) / Nat. Phys. by X Xi (2016) -
Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).
(
10.1038/nphys3580
) / Nat. Phys. by Y Saito (2016) -
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
(
10.1103/PhysRevLett.108.196802
) / Phys. Rev. Lett. by D Xiao (2012) -
Hsu, Y.-T., Vaezi, A., Fischer, M. H. & Kim, E.-A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 8, 14985 (2017).
(
10.1038/ncomms14985
) / Nat. Commun. by YT Hsu (2017) -
Frigeri, P. A., Agterberg, D. F. & Sigrist, M. Spin susceptibility in superconductors without inversion symmetry. New J. Phys. 6, 115–115 (2004).
(
10.1088/1367-2630/6/1/115
) / New J. Phys. by PA Frigeri (2004) -
Coleman, R. V., Eiserman, G. K., Hillenius, S. J., Mitchell, A. T. & Vicent, J. L. Dimensional crossover in the superconducting intercalated layer compound 2H-TaS2. Phys. Rev. B 27, 125–139 (1983).
(
10.1103/PhysRevB.27.125
) / Phys. Rev. B by RV Coleman (1983) -
Ilić, S., Meyer, J. S. & Houzet, M. Enhancement of the upper critical field in disordered transition metal dichalcogenide monolayers. Phys. Rev. Lett. 119, 117001 (2017).
(
10.1103/PhysRevLett.119.117001
) / Phys. Rev. Lett. by S Ilić (2017) -
Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).
(
10.1038/ncomms11043
) / Nat. Commun. by E Navarro-Moratalla (2016) - Wakatsuki, R. & Law, K. T. Proximity effect and Ising superconductivity in superconductor/transition metal dichalcogenide heterostructures. Preprint at http://arxiv.org/abs/1604.04898 (2016).
-
Nakamura, Y. & Yanase, Y. Odd-parity superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 96, 054501 (2017).
(
10.1103/PhysRevB.96.054501
) / Phys. Rev. B by Y Nakamura (2017) -
Hsu, J. W. P. & Kapitulnik, A. Superconducting transition, fluctuation, and vortex motion in a two-dimensional single-crystal Nb film. Phys. Rev. B 45, 4819–4835 (1992).
(
10.1103/PhysRevB.45.4819
) / Phys. Rev. B by JWP Hsu (1992) -
Talantsev, E. F. et al. On the origin of critical temperature enhancement in atomically thin superconductors. 2D Mater. 4, 025072 (2017).
(
10.1088/2053-1583/aa6917
) / 2D Mater. by EF Talantsev (2017) -
Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).
(
10.1021/acs.nanolett.5b00648
) / Nano Lett. by Y Cao (2015) -
Klemm, R. A. Pristine and intercalated transition metal dichalcogenide superconductors. Phys. C: Supercond. Appl. 514, 86–94 (2015).
(
10.1016/j.physc.2015.02.023
) / Phys. C: Supercond. Appl. by RA Klemm (2015) -
Tsen, A. W. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys. 12, 208–212 (2016).
(
10.1038/nphys3579
) / Nat. Phys. by AW Tsen (2016) -
Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).
(
10.1126/science.1259440
) / Science by Y Saito (2015) -
Bauer, E. & Sigrist, M. Non-Centrosymmetric Superconductors (Springer, 2012).
(
10.1007/978-3-642-24624-1
) -
Youn, S. J., Fischer, M. H., Rhim, S. H., Sigrist, M. & Agterberg, D. F. Role of strong spin-orbit coupling in the superconductivity of the hexagonal pnictide SrPtAs. Phys. Rev. B 85, 220505 (2012).
(
10.1103/PhysRevB.85.220505
) / Phys. Rev. B by SJ Youn (2012) -
Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).
(
10.1103/PhysRevLett.92.097001
) / Phys. Rev. Lett. by PA Frigeri (2004) - Lu, J. M. et al. A full superconducting dome of strong Ising protection in gated monolayer WS2. Preprint at http://arxiv.org/abs/1703.06369 (2017).
-
Sanders, C. E. et al. Crystalline and electronic structure of single-layer TaS2. Phys. Rev. B 94, 081404 (2016).
(
10.1103/PhysRevB.94.081404
) / Phys. Rev. B by CE Sanders (2016) -
Freitas, D. C. et al. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS2 and 2H-TaSe2. Phys. Rev. B 93, 184512 (2016).
(
10.1103/PhysRevB.93.184512
) / Phys. Rev. B by DC Freitas (2016) -
Pan, J. et al. Enhanced superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 139, 4623–4626 (2017).
(
10.1021/jacs.7b00216
) / J. Am. Chem. Soc. by J Pan (2017) -
Galvis, J. A. et al. Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by scanning tunneling spectroscopy. Phys. Rev. B 89, 224512 (2014).
(
10.1103/PhysRevB.89.224512
) / Phys. Rev. B by JA Galvis (2014) -
Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2015).
(
10.1038/nphys3527
) / Nat. Phys. by MM Ugeda (2015) -
Zhou, B. T., Yuan, N. F. Q., Jiang, H.-L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).
(
10.1103/PhysRevB.93.180501
) / Phys. Rev. B by BT Zhou (2016) - He, W.-Y., Zhou, B. T., He, J. J., Zhang, T. & Law, K. T. Nodal topological superconductivity in monolayer NbSe2. Preprint at http://arxiv.org/abs/1604.02867 (2016).
-
Liu, C.-X. Unconventional superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. Lett. 118, 087001 (2017).
(
10.1103/PhysRevLett.118.087001
) / Phys. Rev. Lett. by CX Liu (2017) -
Yoshida, M. et al. Extended polymorphism of two-dimensional material. Nano Lett. 17, 5567–5571 (2017).
(
10.1021/acs.nanolett.7b02374
) / Nano Lett. by M Yoshida (2017) -
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blöchl (1994) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997).
(
10.1103/PhysRevLett.78.1396
) / Phys. Rev. Lett. by JP Perdew (1997) -
Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
(
10.1016/j.cpc.2007.11.016
) / Comput. Phys. Commun. by AA Mostofi (2008) -
Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).
(
10.1103/PhysRevB.56.12847
) / Phys. Rev. B by N Marzari (1997) -
Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).
(
10.1103/PhysRevB.65.035109
) / Phys. Rev. B by I Souza (2001) -
Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).
(
10.1038/ncomms3053
) / Nat. Commun. by Z Gong (2013)
Dates
Type | When |
---|---|
Created | 7 years, 4 months ago (April 11, 2018, 10:20 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 20, 2022, 8:36 a.m.) |
Indexed | 31 minutes ago (Sept. 2, 2025, 1:58 p.m.) |
Issued | 7 years, 4 months ago (April 12, 2018) |
Published | 7 years, 4 months ago (April 12, 2018) |
Published Online | 7 years, 4 months ago (April 12, 2018) |
@article{de_la_Barrera_2018, title={Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-03888-4}, DOI={10.1038/s41467-018-03888-4}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={de la Barrera, Sergio C. and Sinko, Michael R. and Gopalan, Devashish P. and Sivadas, Nikhil and Seyler, Kyle L. and Watanabe, Kenji and Taniguchi, Takashi and Tsen, Adam W. and Xu, Xiaodong and Xiao, Di and Hunt, Benjamin M.}, year={2018}, month=apr }