10.1038/s41467-018-02961-2
Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMartensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti–Zr–Cu–Fe alloys yields an amorphous phase instead. Metastable β-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion. The lenticular amorphous plates, which very much resemble α′/α″ martensite in conventional Ti alloys, have a well-defined orientation relationship with the surrounding β-Ti crystal. The present solid-state amorphization process is reversible, largely cooling rate independent and constitutes a rare case of congruent inverse melting. The observed combination of elastic softening and local lattice shear, thus, is the unifying mechanism underlying both martensitic transformations and catastrophic (inverse) melting. Not only do we reveal an alternative mechanism for solid-state amorphization but also establish an explicit experimental link between martensitic transformations and catastrophic melting.

Bibliography

Zhang, L., Zhang, H., Ren, X., Eckert, J., Wang, Y., Zhu, Z., Gemming, T., & Pauly, S. (2018). Amorphous martensite in β-Ti alloys. Nature Communications, 9(1).

Authors 8
  1. Long Zhang (first)
  2. Haifeng Zhang (additional)
  3. Xiaobing Ren (additional)
  4. Jürgen Eckert (additional)
  5. Yandong Wang (additional)
  6. Zhengwang Zhu (additional)
  7. Thomas Gemming (additional)
  8. Simon Pauly (additional)
References 50 Referenced 42
  1. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869–870 (1960). (10.1038/187869b0) / Nature by W Klement (1960)
  2. Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995). (10.1126/science.267.5206.1947) / Science by AL Greer (1995)
  3. Zhong, L., Wang, J. W., Sheng, H. W., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014). (10.1038/nature13617) / Nature by L Zhong (2014)
  4. Johnson, W. L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986). (10.1016/0079-6425(86)90005-8) / Prog. Mater. Sci. by WL Johnson (1986)
  5. Perottoni, C. A. & da Jornada, J. A. H. Pressure-induced amorphization and negative thermal expansion in ZrW2O8. Science 280, 886–889 (1998). (10.1126/science.280.5365.886) / Science by CA Perottoni (1998)
  6. Hu, Q. Y. et al. Polymorphic phase transition mechanism of compressed coesite. Nat. Commun. 6, 6 (2015). / Nat. Commun. by QY Hu (2015)
  7. Wang, Y. G. et al. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets. Nat. Commun. 7, 8 (2016). / Nat. Commun. by YG Wang (2016)
  8. Hrubiak, R., Meng, Y. & Shen, G. Y. Microstructures define melting of molybdenum at high pressures. Nat. Commun. 8, 1–10 (2017). (10.1038/ncomms14562) / Nat. Commun. by R Hrubiak (2017)
  9. Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. & Grimsditch, M. Solid-state amorphization of Zr3Al: Evidence of an elastic instability and first-order phase transformation. Phys. Rev. Lett. 59, 2987–2990 (1987). (10.1103/PhysRevLett.59.2987) / Phys. Rev. Lett. by LE Rehn (1987)
  10. He, Y. et al. In situ observation of shear-driven amorphization in silicon crystals. Nat. Nanotechnol. 11, 866–871 (2016). (10.1038/nnano.2016.166) / Nat. Nanotechnol. by Y He (2016)
  11. Schwarz, R. B. & Johnson, W. L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett. 51, 415–418 (1983). (10.1103/PhysRevLett.51.415) / Phys. Rev. Lett. by RB Schwarz (1983)
  12. Zhu, Y. Y., Liao, G. L., Shi, T. L., Tang, Z. R. & Li, M. Highly choreographed atomic motion and mechanism of interface amorphization. Acta Mater. 125, 69–80 (2017). (10.1016/j.actamat.2016.11.055) / Acta Mater. by YY Zhu (2017)
  13. Koch, C. C., Cavin, O. B., McKamey, C. G. & Scarbrough, J. O. Preparation of “amorphous” Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 43, 1017–1019 (1983). (10.1063/1.94213) / Appl. Phys. Lett. by CC Koch (1983)
  14. Yeh, X. L., Samwer, K. & Johnson, W. L. Formation of an amorphous metallic hydride by reaction of hydrogen with crystalline intermetallic compounds-A new method of synthesizing metallic glasses. Appl. Phys. Lett. 42, 242–244 (1983). (10.1063/1.93901) / Appl. Phys. Lett. by XL Yeh (1983)
  15. Chen, M. W., McCauley, J. W. & Hemker, K. J. Shock-induced localized amorphization in boron carbide. Science 299, 1563–1566 (2003). (10.1126/science.1080819) / Science by MW Chen (2003)
  16. Yan, X. Q. et al. Depressurization amorphization of single-crystal boron carbide. Phys. Rev. Lett. 102, 075505 (2009). (10.1103/PhysRevLett.102.075505) / Phys. Rev. Lett. by XQ Yan (2009)
  17. Lin, C. L. et al. A metastable liquid melted from a crystalline solid under decompression. Nat. Commun. 8, 14260 (2017). (10.1038/ncomms14260) / Nat. Commun. by CL Lin (2017)
  18. Peng, Y. et al. Two-step nucleation mechanism in solid-solid phase transitions. Nat. Mater. 14, 101–108 (2015). (10.1038/nmat4083) / Nat. Mater. by Y Peng (2015)
  19. Pogatscher, S., Leutenegger, D., Schawe, J. E. K., Uggowitzer, P. J. & Loffler, J. F. Solid-solid phase transitions via melting in metals. Nat. Commun. 7, 11113 (2016). (10.1038/ncomms11113) / Nat. Commun. by S Pogatscher (2016)
  20. Johnson, W. L., Li, M. & Krill, C. E. The crystal to glass transformation in relation to melting. J. Non-Cryst. Solids 156, 481–492 (1993). (10.1016/0022-3093(93)90004-H) / J. Non-Cryst. Solids by WL Johnson (1993)
  21. Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F. & Kluge, M. Thermodynamic parallels between solid-state amorphization and melting. J. Mater. Res. 5, 286–301 (1990). (10.1557/JMR.1990.0286) / J. Mater. Res. by D Wolf (1990)
  22. Blatter, A. & von Allmen, M. Reversible amorphization in laser-quenched titanium alloys. Phys. Rev. Lett. 54, 2103–2106 (1985). (10.1103/PhysRevLett.54.2103) / Phys. Rev. Lett. by A Blatter (1985)
  23. Johnson, W. L. Crystal-to-glass transformation in metallic materials. Mater. Sci. Eng. 97, 1–13 (1988). (10.1016/0025-5416(88)90003-1) / Mater. Sci. Eng. by WL Johnson (1988)
  24. Fecht, H. J. & Johnson, W. L. Comparison between the melting and the crystal-to-glass transition. Mater. Sci. Eng. A 133, 427–430 (1991). (10.1016/0921-5093(91)90102-S) / Mater. Sci. Eng. A by HJ Fecht (1991)
  25. Greer, A. L. The thermodynamics of inverse melting. J. Less Common. Met. 140, 327–334 (1988). (10.1016/0022-5088(88)90393-1) / J. Less Common. Met. by AL Greer (1988)
  26. Rastogi, S., Newman, M. & Keller, A. Pressure-induced amorphization and disordering on cooling in a crystalline polymer. Nature 353, 55–57 (1991). (10.1038/353055a0) / Nature by S Rastogi (1991)
  27. Zhao, S. et al. Amorphization and nanocrystallization of silicon under shock compression. Acta Mater. 103, 519–533 (2016). (10.1016/j.actamat.2015.09.022) / Acta Mater. by S Zhao (2016)
  28. Li, Y. X. et al. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. Nat. Commun. 8, 8 (2017). (10.1038/s41467-017-00021-9) / Nat. Commun. by YX Li (2017)
  29. Jin, Z. H., Gumbsch, P., Lu, K. & Ma, E. Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703 (2001). (10.1103/PhysRevLett.87.055703) / Phys. Rev. Lett. by ZH Jin (2001)
  30. Born, M. Thermodynamics of crystals and melting. J. Chem. Phys. 7, 591–603 (1939). (10.1063/1.1750497) / J. Chem. Phys. by M Born (1939)
  31. Tallon, J. L. A hierarchy of catastrophes as a succession of stability limits for the crystalline state. Nature 342, 658–660 (1989). (10.1038/342658a0) / Nature by JL Tallon (1989)
  32. Fecht, H. J. & Johnson, W. L. Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50–51 (1988). (10.1038/334050a0) / Nature by HJ Fecht (1988)
  33. Wang, Z., Wang, F., Peng, Y., Zheng, Z. & Han, Y. Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012). (10.1126/science.1224763) / Science by Z Wang (2012)
  34. Cahn, R. W. Materials science: Melting from within. Nature 413, 582–583 (2001). (10.1038/35098169) / Nature by RW Cahn (2001)
  35. Otsuka, K. & Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005). (10.1016/j.pmatsci.2004.10.001) / Prog. Mater. Sci. by K Otsuka (2005)
  36. Banerjee, S. & Mukhopadhyay, P. in Phase Transformations-examples from Titanium and Zirconium Alloys (ed. Cahn, R. W.) 259–280 (Elsevier, Oxford, UK, 2007).
  37. Bayerlein, M., Christ, H. J. & Mughrabi, H. Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel. Mater. Sci. Eng. A 114, L11–L16 (1989). (10.1016/0921-5093(89)90871-X) / Mater. Sci. Eng. A by M Bayerlein (1989)
  38. Bowden, P. B. & Young, R. J. Deformation mechanisms in crystalline polymers. J. Mater. Sci. 9, 2034–2051 (1974). (10.1007/BF00540553) / J. Mater. Sci. by PB Bowden (1974)
  39. Kelly, P. M. & Francis Rose, L. R. The martensitic transformation in ceramics — its role in transformation toughening. Prog. Mater. Sci. 47, 463–557 (2002). (10.1016/S0079-6425(00)00005-0) / Prog. Mater. Sci. by PM Kelly (2002)
  40. Petry, W. et al. Phonon dispersion of the bcc phase of group-IV metals. I. bcc titanium. Phys. Rev. B 43, 10933–10947 (1991). (10.1103/PhysRevB.43.10933) / Phys. Rev. B by W Petry (1991)
  41. Li, M. & Johnson, W. L. Instability of metastable solid solutions and the crystal to glass transition. Phys. Rev. Lett. 70, 1120–1123 (1993). (10.1103/PhysRevLett.70.1120) / Phys. Rev. Lett. by M Li (1993)
  42. Wu, C. J., Soderlind, P., Glosli, J. N. & Klepeis, J. E. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting. Nat. Mater. 8, 223–228 (2009). (10.1038/nmat2375) / Nat. Mater. by CJ Wu (2009)
  43. Kingma, K. J., Meade, C., Hemley, R. J., Mao, H. K. & Veblen, D. R. Microstructural observations of alpha-quartz amorphization. Science 259, 666–669 (1993). (10.1126/science.259.5095.666) / Science by KJ Kingma (1993)
  44. Banerjee, D. & Williams, J. C. Perspectives on titanium science and technology. Acta Mater. 61, 844–879 (2013). (10.1016/j.actamat.2012.10.043) / Acta Mater. by D Banerjee (2013)
  45. Shi, R., Ma, N. & Wang, Y. Predicting equilibrium shape of precipitates as function of coherency state. Acta Mater. 60, 4172–4184 (2012). (10.1016/j.actamat.2012.04.019) / Acta Mater. by R Shi (2012)
  46. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948). (10.1021/cr60135a002) / Chem. Rev. by W Kauzmann (1948)
  47. Bormann, R. Thermodynamic and kinetic requirements for inverse melting. Mater. Sci. Eng. A 179–180, 31–35 (1994). (10.1016/0921-5093(94)90159-7) / Mater. Sci. Eng. A by R Bormann (1994)
  48. Sakata, M., Cowlam, N. & Davies, H. A. Chemical short-range order in liquid and amorphous Cu66Ti34 alloys. J. Phys. F: Met. Phys. 11, L157 (1981). (10.1088/0305-4608/11/7/005) / J. Phys. F: Met. Phys. by M Sakata (1981)
  49. Zhang, L. et al. Compressive plastic metallic glasses with exceptional glass forming ability in the Ti–Zr–Cu–Fe–Be alloy system. J. Alloy. Compd. 638, 349–355 (2015). (10.1016/j.jallcom.2015.03.120) / J. Alloy. Compd. by L Zhang (2015)
  50. Lin, X. H. & Johnson, W. L. Formation of Ti-Zr-Cu-Ni bulk metallic glasses. J. Appl. Phys. 78, 6514–6519 (1995). (10.1063/1.360537) / J. Appl. Phys. by XH Lin (1995)
Dates
Type When
Created 7 years, 6 months ago (Jan. 30, 2018, 6:09 p.m.)
Deposited 2 years, 8 months ago (Dec. 20, 2022, 7:54 a.m.)
Indexed 1 day, 16 hours ago (Aug. 19, 2025, 6:41 a.m.)
Issued 7 years, 6 months ago (Feb. 6, 2018)
Published 7 years, 6 months ago (Feb. 6, 2018)
Published Online 7 years, 6 months ago (Feb. 6, 2018)
Funders 0

None

@article{Zhang_2018, title={Amorphous martensite in β-Ti alloys}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-018-02961-2}, DOI={10.1038/s41467-018-02961-2}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zhang, Long and Zhang, Haifeng and Ren, Xiaobing and Eckert, Jürgen and Wang, Yandong and Zhu, Zhengwang and Gemming, Thomas and Pauly, Simon}, year={2018}, month=feb }