Abstract
AbstractDoping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS2 crystals. The doping readily induces a structural transformation from naturally occurring 2H stacking to 3R stacking. Electronically, a strong interaction of the Nb impurity states with the host valence bands drastically and nonlinearly modifies the electronic band structure with the valence band maximum of multilayer MoS2 at the Γ point pushed upward by hybridization with the Nb states. When thinned down to monolayers, in stark contrast, such significant nonlinear effect vanishes, instead resulting in strong and broadband photoluminescence via the formation of exciton complexes tightly bound to neutral acceptors.
Bibliography
Suh, J., Tan, T. L., Zhao, W., Park, J., Lin, D.-Y., Park, T.-E., Kim, J., Jin, C., Saigal, N., Ghosh, S., Wong, Z. M., Chen, Y., Wang, F., Walukiewicz, W., Eda, G., & Wu, J. (2018). Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nature Communications, 9(1).
Authors
16
- Joonki Suh (first)
- Teck Leong Tan (additional)
- Weijie Zhao (additional)
- Joonsuk Park (additional)
- Der-Yuh Lin (additional)
- Tae-Eon Park (additional)
- Jonghwan Kim (additional)
- Chenhao Jin (additional)
- Nihit Saigal (additional)
- Sandip Ghosh (additional)
- Zicong Marvin Wong (additional)
- Yabin Chen (additional)
- Feng Wang (additional)
- Wladyslaw Walukiewicz (additional)
- Goki Eda (additional)
- Junqiao Wu (additional)
References
51
Referenced
174
-
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).
(
10.1021/nn500064s
) / ACS Nano by D Jariwala (2014) -
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
(
10.1038/nmat4452
) / Nat. Mater. by A Allain (2015) -
Behura, S. & Berry, V. Interfacial nondegenerate doping of MoS2 and other two-dimensional semiconductors. ACS Nano 9, 2227–2230 (2015).
(
10.1021/acsnano.5b01442
) / ACS Nano by S Behura (2015) -
Choi, M. S. et al. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 8, 9332–9340 (2014).
(
10.1021/nn503284n
) / ACS Nano by MS Choi (2014) -
Saha, D. & Mahapatra, S. Anisotropic transport in 1T’ monolayer MoS2 and its metal interfaces. Phys. Chem. Chem. Phys. 19, 10453–10461 (2017).
(
10.1039/C7CP00816C
) / Phys. Chem. Chem. Phys. by D Saha (2017) -
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
(
10.1038/nmat4080
) / Nat. Mater. by R Kappera (2014) -
Suh, J. et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano. Lett. 14, 6976–6982 (2014).
(
10.1021/nl503251h
) / Nano. Lett. by J Suh (2014) -
Lin, Y.-C. et al. Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv. Mater. 26, 2857–2861 (2014).
(
10.1002/adma.201304985
) / Adv. Mater. by YC Lin (2014) -
Zhang, K. et al. Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586–6591 (2015).
(
10.1021/acs.nanolett.5b02315
) / Nano Lett. by K Zhang (2015) -
Zhao, P. et al. Electronic and magnetic properties of Re-doped single-layer MoS2: a DFT study. Comput. Mater. Sci. 128, 287–293 (2017).
(
10.1016/j.commatsci.2016.11.030
) / Comput. Mater. Sci. by P Zhao (2017) -
Ramasubramaniam, A. & Naveh, D. Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87, 195201 (2013).
(
10.1103/PhysRevB.87.195201
) / Phys. Rev. B by A Ramasubramaniam (2013) -
Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).
(
10.1039/C5EE00751H
) / Energy Environ. Sci. by J Deng (2015) -
Vogl, P. Transition-metal impurities in semiconductors. In Advances in Solid State Physics Vol. 25 (ed. Haug, R.) 563–571 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1985).
(
10.1007/BFb0108193
) -
Shan, W. et al. Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82, 1221 (1999).
(
10.1103/PhysRevLett.82.1221
) / Phys. Rev. Lett. by W Shan (1999) -
Wu, J., Shan, W. & Walukiewicz, W. Band anticrossing in highly mismatched III–V semiconductor alloys. Semicond. Sci. Technol. 17, 860–869 (2002).
(
10.1088/0268-1242/17/8/315
) / Semicond. Sci. Technol. by J Wu (2002) -
Jaros, M. Electronic properties of semiconductor alloy systems. Rep. Prog. Phys. 48, 1091–1154 (1985).
(
10.1088/0034-4885/48/8/001
) / Rep. Prog. Phys. by M Jaros (1985) -
Mocatta, D. et al. Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011).
(
10.1126/science.1196321
) / Science by D Mocatta (2011) -
Crochet, J. J., Duque, J. G., Werner, J. H. & Doorn, S. K. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes. Nat. Nanotechnol. 7, 126–132 (2012).
(
10.1038/nnano.2011.227
) / Nat. Nanotechnol. by JJ Crochet (2012) -
Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).
(
10.1021/ja5033327
) / J. Am. Chem. Soc. by D Kiriya (2014) -
Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano. Lett. 13, 5944–5948 (2013).
(
10.1021/nl403036h
) / Nano. Lett. by S Mouri (2013) -
Sun, Q.-Q. et al. The physics and backward diode behavior of heavily doped single layer MoS2 based p-n junctions. Appl. Phys. Lett. 102, 093104 (2013).
(
10.1063/1.4794802
) / Appl. Phys. Lett. by QQ Sun (2013) -
Ivanovskaya, V. et al. Ab initio study of bilateral doping within the MoS2-NbS2 system. Phys. Rev. B 78, 134104 (2008).
(
10.1103/PhysRevB.78.134104
) / Phys. Rev. B by V Ivanovskaya (2008) -
Title, R. S. & Shafer, M. W. Band structure of the layered transition-metal dichalcogenides: an experimental study by electron paramagnetic resonance on Nb-doped MoS2. Phys. Rev. Lett. 28, 808 (1972).
(
10.1103/PhysRevLett.28.808
) / Phys. Rev. Lett. by RS Title (1972) -
Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).
(
10.1038/srep02657
) / Sci. Rep. by S Tongay (2013) -
Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).
(
10.1038/nnano.2014.148
) / Nat. Nanotechnol. by R Suzuki (2014) -
Shearer, M. J. et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 139, 3496–3504 (2017).
(
10.1021/jacs.6b12559
) / J. Am. Chem. Soc. by MJ Shearer (2017) -
Tiong, K. K., Liao, P. C., Ho, C. H. & Huang, Y. S. Growth and characterization of rhenium-doped MoS2. J. Cryst. Growth 205, 543–547 (1999).
(
10.1016/S0022-0248(99)00296-1
) / J. Cryst. Growth by KK Tiong (1999) -
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
(
10.1126/science.1256815
) / Science by X Qian (2014) -
Saha, D. & Mahapatra, S. Atomistic modeling of the metallic-to-semiconducting phase boundaries in monolayer MoS2. Appl. Phys. Lett. 108, 253106 (2016).
(
10.1063/1.4954257
) / Appl. Phys. Lett. by D Saha (2016) -
Saigal, N. & Ghosh, S. H-point exciton transitions in bulk MoS2. Appl. Phys. Lett. 106, 182103 (2015).
(
10.1063/1.4920986
) / Appl. Phys. Lett. by N Saigal (2015) -
Lu, X. et al. Rapid and nondestructive identification of polytypism and stacking sequences in few-layer molybdenum diselenide by raman spectroscopy. Adv. Mater. 27, 4502–4508 (2015).
(
10.1002/adma.201501086
) / Adv. Mater. by X Lu (2015) -
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano. Lett. 10, 1271–1275 (2010).
(
10.1021/nl903868w
) / Nano. Lett. by A Splendiani (2010) -
Chanana, A. & Mahapatra, S. Theoretical insights to niobium-doped monolayer MoS2-Gold Contact. IEEE Trans. Electron Devices 62, 2346–2351 (2015).
(
10.1109/TED.2015.2433931
) / IEEE Trans. Electron Devices by A Chanana (2015) -
Alberi, K. et al. Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B 75, 045203 (2007).
(
10.1103/PhysRevB.75.045203
) / Phys. Rev. B by K Alberi (2007) -
Wu, J. et al. Origin of the large band-gap bowing in highly mismatched semiconductor alloys. Phys. Rev. B 67, 035207 (2003).
(
10.1103/PhysRevB.67.035207
) / Phys. Rev. B by J Wu (2003) -
Wu, J. et al. Band anticrossing in GaP1−xNx alloys. Phys. Rev. B 65, 241303 (2002).
(
10.1103/PhysRevB.65.241303
) / Phys. Rev. B by J Wu (2002) - Klingshirn, C. F. Semiconductor Optics, 4 edn (Springer Berlin Heidelberg: Berlin, Heidelberg, 2012).
-
Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).
(
10.1126/science.aad2114
) / Science by M Amani (2015) -
You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).
(
10.1038/nphys3324
) / Nat. Phys. by Y You (2015) -
Lui, C. H. et al. Trion-induced negative photoconductivity in monolayer MoS2. Phys. Rev. Lett. 113, 166801 (2014).
(
10.1103/PhysRevLett.113.166801
) / Phys. Rev. Lett. by CH Lui (2014) -
Burgess, T. et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 7, 11927 (2016).
(
10.1038/ncomms11927
) / Nat. Commun. by T Burgess (2016) -
Gao, X. et al. Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy. Sci. Rep. 6, 29112 (2016).
(
10.1038/srep29112
) / Sci. Rep. by X Gao (2016) -
Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014).
(
10.1038/ncomms5543
) / Nat. Commun. by D Kozawa (2014) -
Kumar, R., Verzhbitskiy, I. & Eda, G. Strong optical absorption and photocarrier relaxation in 2-D semiconductors. IEEE J. Quantum Electron. 51, 0600206 (2015).
(
10.1109/JQE.2015.2470549
) / IEEE J. Quantum Electron. by R Kumar (2015) -
Wu, J., Walukiewicz, W. & Haller, E. E. Band structure of highly mismatched semiconductor alloys: coherent potential approximation. Phys. Rev. B 65, 233210 (2002).
(
10.1103/PhysRevB.65.233210
) / Phys. Rev. B by J Wu (2002) -
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / J. Comput. Mater. Sci. by G Kresse (1996) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blochl (1994) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
(
10.1002/jcc.20495
) / J. Comput. Chem. by S Grimme (2006) -
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
(
10.1103/PhysRevB.13.5188
) / Phys. Rev. B by HJ Monkhorst (1976)
Dates
Type | When |
---|---|
Created | 7 years, 7 months ago (Jan. 9, 2018, 10:27 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 20, 2022, 7:44 a.m.) |
Indexed | 43 minutes ago (Aug. 27, 2025, 5:09 a.m.) |
Issued | 7 years, 7 months ago (Jan. 15, 2018) |
Published | 7 years, 7 months ago (Jan. 15, 2018) |
Published Online | 7 years, 7 months ago (Jan. 15, 2018) |
@article{Suh_2018, title={Reconfiguring crystal and electronic structures of MoS2 by substitutional doping}, volume={9}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-017-02631-9}, DOI={10.1038/s41467-017-02631-9}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Suh, Joonki and Tan, Teck Leong and Zhao, Weijie and Park, Joonsuk and Lin, Der-Yuh and Park, Tae-Eon and Kim, Jonghwan and Jin, Chenhao and Saigal, Nihit and Ghosh, Sandip and Wong, Zicong Marvin and Chen, Yabin and Wang, Feng and Walukiewicz, Wladyslaw and Eda, Goki and Wu, Junqiao}, year={2018}, month=jan }