Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractPure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose–Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose–Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose–Einstein condensation.

Bibliography

Demidov, V. E., Urazhdin, S., Divinskiy, B., Bessonov, V. D., Rinkevich, A. B., Ustinov, V. V., & Demokritov, S. O. (2017). Chemical potential of quasi-equilibrium magnon gas driven by pure spin current. Nature Communications, 8(1).

Authors 7
  1. V. E. Demidov (first)
  2. S. Urazhdin (additional)
  3. B. Divinskiy (additional)
  4. V. D. Bessonov (additional)
  5. A. B. Rinkevich (additional)
  6. V. V. Ustinov (additional)
  7. S. O. Demokritov (additional)
References 36 Referenced 35
  1. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006). (10.1038/nature05117) / Nature by SO Demokritov (2006)
  2. Demidov, V. E., Dzyapko, O., Demokritov, S. O., Melkov, G. A. & Slavin, A. N. Thermalization of a parametrically driven magnon gas leading to Bose–Einstein condensation. Phys. Rev. Lett. 99, 037205 (2007). (10.1103/PhysRevLett.99.037205) / Phys. Rev. Lett. by VE Demidov (2007)
  3. Demidov, V. E., Dzyapko, O., Demokritov, S. O., Melkov, G. A. & Slavin, A. N. Observation of spontaneous coherence in Bose–Einstein condensate of magnons. Phys. Rev. Lett. 100, 047205 (2008). (10.1103/PhysRevLett.100.047205) / Phys. Rev. Lett. by VE Demidov (2008)
  4. Demidov, V. E. et al. Magnon kinetics and Bose–Einstein condensation studied in phase space. Phys. Rev. Lett. 101, 257201 (2008). (10.1103/PhysRevLett.101.257201) / Phys. Rev. Lett. by VE Demidov (2008)
  5. Rezende, S. M. Theory of coherence in Bose–Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009). (10.1103/PhysRevB.79.174411) / Phys. Rev. B by SM Rezende (2009)
  6. Nowik-Boltyk., P., Dzyapko, O., Demidov, V. E., Berloff, N. G. & Demokritov, S. O. Spatially non-uniform ground state and quantized vortices in a two-component Bose–Einstein condensate of magnons. Sci. Rep. 2, 482 (2012). (10.1038/srep00482) / Sci. Rep. by P Nowik-Boltyk. (2012)
  7. Serga, A. A. et al. Bose–Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2013). / Nat. Commun. by AA Serga (2013)
  8. Li, F., Saslow, W. M. & Pokrovsky, V. L. Phase diagram for magnon condensate in yttrium iron garnet film. Sci. Rep. 3, 1372 (2013). (10.1038/srep01372) / Sci. Rep. by F Li (2013)
  9. Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016). (10.1038/nphys3838) / Nat. Phys. by DA Bozhko (2016)
  10. Sun, C., Nattermann, T. & Pokrovsky, V. L. Unconventional superfluidity in yttrium iron Garnet films. Phys. Rev. Lett. 116, 257205 (2016). (10.1103/PhysRevLett.116.257205) / Phys. Rev. Lett. by C Sun (2016)
  11. Dzyapko, O. et al. High-resolution magneto-optical Kerr-effect spectroscopy of magnon Bose–Einstein condensate. IEEE Magn. Lett. 7, 3501805 (2016). (10.1109/LMAG.2016.2532318) / IEEE Magn. Lett. by O Dzyapko (2016)
  12. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, New York, 1996).
  13. Demidov, V. E. et al. Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011). (10.1103/PhysRevLett.107.107204) / Phys. Rev. Lett. by VE Demidov (2011)
  14. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. Sov. Phys. JETP Lett. 13, 467–469 (1971). / Sov. Phys. JETP Lett. by MI Dyakonov (1971)
  15. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999). (10.1103/PhysRevLett.83.1834) / Phys. Rev. Lett. by JE Hirsch (1999)
  16. Hoffmann, A. Spin Hall effects in metals. IEEE. Trans. Magn. 49, 5172–5193 (2013). (10.1109/TMAG.2013.2262947) / IEEE. Trans. Magn. by A Hoffmann (2013)
  17. Bender, S. A., Duine, R. A. & Tserkovnyak, Y. Electronic pumping of quasi-equilibrium Bose–Einstein-condensed magnons. Phys. Rev. Lett. 108, 246601 (2012). (10.1103/PhysRevLett.108.246601) / Phys. Rev. Lett. by SA Bender (2012)
  18. Bender, S. A., Duine, R. A., Brataas, A. & Tserkovnyak, Y. Dynamic phase diagram of dc-pumped magnon condensates. Phys. Rev. B 90, 094409 (2014). (10.1103/PhysRevB.90.094409) / Phys. Rev. B by SA Bender (2014)
  19. Duine, R. A., Brataas, A., Bender, S. A. & Tserkovnyak, Y. Spintronics and magnon Bose–Einstein condensation. Preprint at http://arxiv.org/abs/1505.01329 (2015).
  20. Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A. & van Wees, B. J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412 (2016). (10.1103/PhysRevB.94.014412) / Phys. Rev. B by LJ Cornelissen (2016)
  21. Fjærbu, E. L., Rohling, N. & Brataas, A. Electrically driven Bose–Einstein condensation of magnons in antiferromagnets. Phys. Rev. B 95, 144408 (2017). (10.1103/PhysRevB.95.144408) / Phys. Rev. B by EL Fjærbu (2017)
  22. Cornelissen, L. J., Liu, J., Duine, R. A., Ben Youssef, J. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015). (10.1038/nphys3465) / Nat. Phys. by LJ Cornelissen (2015)
  23. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2016). (10.1126/science.aak9611) / Science by C Du (2016)
  24. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008). (10.1103/PhysRevLett.101.036601) / Phys. Rev. Lett. by K Ando (2008)
  25. Demidov, V. E. & Demokritov, S. O. Magnonic waveguides studied by microfocus brillouin light scattering. IEEE Trans. Mag. 51, 0800215 (2015). (10.1109/TMAG.2014.2388196) / IEEE Trans. Mag. by VE Demidov (2015)
  26. Demidov, V. E. et al. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 673, 1–31 (2017). (10.1016/j.physrep.2017.01.001) / Phys. Rep. by VE Demidov (2017)
  27. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012). (10.1038/nmat3459) / Nat. Mater. by VE Demidov (2012)
  28. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995). (10.1126/science.269.5221.198) / Science by MH Anderson (1995)
  29. Liu, L., Pai, C.-F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012). (10.1103/PhysRevLett.109.186602) / Phys. Rev. Lett. by L Liu (2012)
  30. Demidov, V. E., Urazhdin, S., Zholud, A., Sadovnikov, A. V. & Demokritov, S. O. Nanoconstriction-based spin-Hall nano-oscillator. Appl. Phys. Lett. 105, 172410 (2014). (10.1063/1.4901027) / Appl. Phys. Lett. by VE Demidov (2014)
  31. Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014). (10.1038/ncomms6616) / Nat. Commun. by Z Duan (2014)
  32. Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque. Nat. Commun. 7, 10377 (2016). (10.1038/ncomms10377) / Nat. Commun. by M Collet (2016)
  33. Awad, A. A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292–299 (2017). (10.1038/nphys3927) / Nat. Phys. by AA Awad (2017)
  34. Snoke, D. Coherent questions. Nature 443, 403–404 (2006). (10.1038/443403a) / Nature by D Snoke (2006)
  35. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996). (10.1016/0304-8853(96)00062-5) / J. Magn. Magn. Mater. by JC Slonczewski (1996)
  36. Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008). (10.1126/science.1162843) / Science by V Vlaminck (2008)
Dates
Type When
Created 7 years, 9 months ago (Nov. 13, 2017, 6:08 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 5:50 p.m.)
Indexed 3 weeks, 2 days ago (Aug. 6, 2025, 8:44 a.m.)
Issued 7 years, 9 months ago (Nov. 17, 2017)
Published 7 years, 9 months ago (Nov. 17, 2017)
Published Online 7 years, 9 months ago (Nov. 17, 2017)
Funders 0

None

@article{Demidov_2017, title={Chemical potential of quasi-equilibrium magnon gas driven by pure spin current}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-017-01937-y}, DOI={10.1038/s41467-017-01937-y}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Demidov, V. E. and Urazhdin, S. and Divinskiy, B. and Bessonov, V. D. and Rinkevich, A. B. and Ustinov, V. V. and Demokritov, S. O.}, year={2017}, month=nov }