Abstract
AbstractSecondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.
Authors
12
- Snehashis Choudhury (first)
- Shuya Wei (additional)
- Yalcin Ozhabes (additional)
- Deniz Gunceler (additional)
- Michael J. Zachman (additional)
- Zhengyuan Tu (additional)
- Jung Hwan Shin (additional)
- Pooja Nath (additional)
- Akanksha Agrawal (additional)
- Lena F. Kourkoutis (additional)
- Tomas A. Arias (additional)
- Lynden A. Archer (additional)
References
53
Referenced
369
-
Armand, M. & Tarascon, J.-M. Building better batteries. Nature
451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature
414, 359–367 (2001).
(
10.1038/35104644
) / Nature by JM Tarascon (2001) -
Hueso, K. B., Armand, M. & Rojo, T. High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci.
6, 734–749 (2013).
(
10.1039/c3ee24086j
) / Energy Environ. Sci. by KB Hueso (2013) -
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol.
9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotechnol. by G Zheng (2014) -
Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev.
104, 4271–4301 (2004).
(
10.1021/cr020731c
) / Chem. Rev. by MS Whittingham (2004) -
Wei, S. et al. A stable room-temperature sodium–sulfur battery. Nat. Commun.
7, 11722 (2016).
(
10.1038/ncomms11722
) / Nat. Commun. by S Wei (2016) -
Wei, S. et al. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater.
29, 1605512 (2017).
(
10.1002/adma.201605512
) / Adv. Mater. by S Wei (2017) -
Cohn, A. P., Muralidharan, N., Carter, R., Share, K. & Pint, C. L. Anode-free sodium battery through in situ plating of sodium metal. Nano. Lett.
17, 1296–1301 (2017).
(
10.1021/acs.nanolett.6b05174
) / Nano. Lett. by AP Cohn (2017) -
Choudhury, S. et al. Designer interphases for lithium-oxygen electrochemical cell. Sci. Adv.
3, e1602809 (2017).
(
10.1126/sciadv.1602809
) / Sci. Adv. by S Choudhury (2017) -
Yadegari, H., Sun, Q. & Sun, X. Sodium-oxygen batteries: a comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater.
28, 7065–7093 (2016).
(
10.1002/adma.201504373
) / Adv. Mater. by H Yadegari (2016) -
Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. of Chem. Res.
48, 2947–2956 (2015).
(
10.1021/acs.accounts.5b00427
) / Acc. of Chem. Res. by Z Tu (2015) -
Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy
1, 16114 (2016).
(
10.1038/nenergy.2016.114
) / Nat. Energy by MD Tikekar (2016) -
Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater.
2, 1500246 (2015).
(
10.1002/aelm.201500246
) / Adv. Electron. Mater. by S Choudhury (2015) -
Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun.
6, 10101 (2015).
(
10.1038/ncomms10101
) / Nat. Commun. by S Choudhury (2015) -
Agrawal, A., Choudhury, S. & Archer, L. A. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Adv.
5, 20800–20809 (2015).
(
10.1039/C5RA01031D
) / RSC Adv. by A Agrawal (2015) -
Wong, D. H. C. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. USA.
111, 3327–3331 (2014).
(
10.1073/pnas.1314615111
) / Proc. Natl. Acad. Sci. USA. by DHC Wong (2014) - Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013). / Nat. Commun. by H Wu (2013)
-
Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci.
1, 449–455 (2015).
(
10.1021/acscentsci.5b00328
) / ACS Cent. Sci. by ZW Seh (2015) -
Pan, H., Hu, Y.-S. & Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci.
6, 2338 (2013).
(
10.1039/c3ee40847g
) / Energy Environ. Sci. by H Pan (2013) -
Tu, Z. et al. Nanoporous hybrid electrolytes for high energy batteries based on reactive metal anodes. Adv. Energy Mater.
7, 1602367 (2017).
(
10.1002/aenm.201602367
) / Adv. Energy Mater. by Z Tu (2017) -
Hallinan, D. T., Mullin, S. A., Stone, G. M. & Balsara, N. P. Lithium metal stability in batteries with block copolymer electrolytes. J. Electrochem. Soc.
160, A464–A470 (2013).
(
10.1149/2.030303jes
) / J. Electrochem. Soc. by DT Hallinan (2013) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater.
13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Lu, Y., Das, S. K., Moganty, S. S. & Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater.
24, 4430–4435 (2012).
(
10.1002/adma.201201953
) / Adv. Mater. by Y Lu (2012) -
Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater.
25, 834–839 (2013).
(
10.1021/cm303091j
) / Chem. Mater. by JL Schaefer (2013) -
Bouchet, R. et al. efficient electrolytes for lithium-metal batteries. Nat. Mater.
12, 452–457 (2013).
(
10.1038/nmat3602
) / Nat. Mater. by R Bouchet (2013) -
Feng, S. et al. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta.
93, 254–263 (2013).
(
10.1016/j.electacta.2013.01.119
) / Electrochim. Acta. by S Feng (2013) -
Bertasi, F. et al. Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly(ethylene glycol) 400. Electrochim. Acta.
175, 113–123 (2015).
(
10.1016/j.electacta.2015.03.149
) / Electrochim. Acta. by F Bertasi (2015) -
Guo, J., Wen, Z., Wu, M., Jin, J. & Liu, Y. Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun.
51, 59–63 (2015).
(
10.1016/j.elecom.2014.12.008
) / Electrochem. Commun. by J Guo (2015) -
Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun.
6, 7436 (2015).
(
10.1038/ncomms8436
) / Nat. Commun. by W Li (2015) -
Pires, J. et al. Role of propane sultone as additive to improve the performance of lithium-rich cathode material at high potential. RSC Adv.
5, 42088–42094 (2015).
(
10.1039/C5RA05650K
) / RSC Adv. by J Pires (2015) -
Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta
47, 1423–1439 (2002).
(
10.1016/S0013-4686(01)00858-1
) / Electrochim. Acta by D Aurbach (2002) -
Chen, L., Wang, K., Xie, X. & Xie, J. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources
174, 538–543 (2007).
(
10.1016/j.jpowsour.2007.06.149
) / J. Power Sources by L Chen (2007) -
Etacheri, V. et al. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire li-ion battery anodes. Langmuir
28, 965–976 (2012).
(
10.1021/la203712s
) / Langmuir by V Etacheri (2012) -
Miao, R. et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci. Rep.
6, 21771 (2016).
(
10.1038/srep21771
) / Sci. Rep. by R Miao (2016) -
Li, B., Xu, M., Li, T., Li, W. & Hu, S. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Electrochem. Commun.
17, 92–95 (2012).
(
10.1016/j.elecom.2012.02.016
) / Electrochem. Commun. by B Li (2012) -
Choudhury, S. et al. Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv.
3, 1–12 (2017).
(
10.1126/sciadv.1602809
) / Sci. Adv. by S Choudhury (2017) -
Li, N., Yin, Y., Yang, C. & Guo, Y. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater.
28, 1853–1858 (2016).
(
10.1002/adma.201504526
) / Adv. Mater. by N Li (2016) -
Ye, H. et al. Nano energy synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy
36, 411–417 (2017).
(
10.1016/j.nanoen.2017.04.056
) / Nano Energy by H Ye (2017) -
Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources
271, 291–297 (2014).
(
10.1016/j.jpowsour.2014.08.011
) / J. Power Sources by R Miao (2014) -
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun.
6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015) -
Ha, S. et al. Magnesium (II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces
6, 4063–4073 (2014).
(
10.1021/am405619v
) / ACS Appl. Mater. Interfaces by S Ha (2014) -
Jäckle, M. & Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).
(
10.1063/1.4901055
) / J. Chem. Phys. by M Jäckle (2014) -
Chazalviel, J.-N. Electrochemical aspects of the generation of rampified metallic electrodeposits. Phys. Rev. A.
42, 7355–7367 (1990).
(
10.1103/PhysRevA.42.7355
) / Phys. Rev. A. by J-N Chazalviel (1990) - Ozhabes, Y., Gunceler, D. & Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. Preprint at http://arXiv.org/abs/1504.05799 (2015).
-
Gunceler, D., Letchworth-Weaver, K., Sundararaman, R., Schwarz, K.a. & Arias, T. a. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Model. Simul. Mater. Sci. Eng.
21, 74005 (2013).
(
10.1088/0965-0393/21/7/074005
) / Model. Simul. Mater. Sci. Eng. by D Gunceler (2013) - Gunceler, D. et al. Nonlinear solvation models: Dendrite suppression on lithium surfaces. In 16th International Workshop on Computation Physics and Materials Science: Total Energy and Force Methods. 10, 11–12 (2013).
- Gunceler, D. & Arias, T. A. Universal iso-density polarizable continuum model for molecular solvents. Preprint at http://arXiv.org/abs/1403.6465 (2014).
-
Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci.
81, 446–452 (2014).
(
10.1016/j.commatsci.2013.08.053
) / Comput. Mater. Sci. by KF Garrity (2014) -
Zangmeister, D. Z., Turner, A. T. & Pemberton, E. P. Segregation of NaBr/NaCl crystals grown from aqueous solutions: implications for sea salt surface chemistry. Geophys. Res. Lett.
28, 995–998 (2001).
(
10.1029/2000GL012539
) / Geophys. Res. Lett. by DZ Zangmeister (2001) -
Wang, X. et al. A chelation strategy for in-situ constructing surface oxygen vacancy on {001} facets exposed BiOBr nanosheets. Sci. Rep.
6, 24918 (2016).
(
10.1038/srep24918
) / Sci. Rep. by X Wang (2016) - NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. (National Institute of Standards Technology, Gaithersburg, 2012).
-
Wei, S. et al. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc.
137, 12143–12152 (2015).
(
10.1021/jacs.5b08113
) / J. Am. Chem. Soc. by S Wei (2015) -
Wang, J. et al. Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun.
9, 31–34 (2007).
(
10.1016/j.elecom.2006.08.029
) / Electrochem. Commun. by J Wang (2007)
Dates
Type | When |
---|---|
Created | 7 years, 10 months ago (Oct. 6, 2017, 2:35 p.m.) |
Deposited | 2 years, 7 months ago (Dec. 22, 2022, 4:19 p.m.) |
Indexed | 1 hour, 26 minutes ago (Aug. 22, 2025, 12:57 a.m.) |
Issued | 7 years, 10 months ago (Oct. 12, 2017) |
Published | 7 years, 10 months ago (Oct. 12, 2017) |
Published Online | 7 years, 10 months ago (Oct. 12, 2017) |
@article{Choudhury_2017, title={Designing solid-liquid interphases for sodium batteries}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-017-00742-x}, DOI={10.1038/s41467-017-00742-x}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Choudhury, Snehashis and Wei, Shuya and Ozhabes, Yalcin and Gunceler, Deniz and Zachman, Michael J. and Tu, Zhengyuan and Shin, Jung Hwan and Nath, Pooja and Agrawal, Akanksha and Kourkoutis, Lena F. and Arias, Tomas A. and Archer, Lynden A.}, year={2017}, month=oct }