Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractUltrastable high-spectral-purity lasers have served as the cornerstone behind optical atomic clocks, quantum measurements, precision optical microwave generation, high-resolution optical spectroscopy, and sensing. Hertz-level lasers stabilized to high-finesse Fabry-Pérot cavities are typically used for these studies, which are large and fragile and remain laboratory instruments. There is a clear demand for rugged miniaturized lasers with stabilities comparable to those of bulk lasers. Over the past decade, ultrahigh-Q optical whispering-gallery-mode resonators have served as a platform for low-noise microlasers but have not yet reached the stabilities defined by their fundamental noise. Here, we show the noise characteristics of whispering-gallery-mode resonators and demonstrate a resonator-stabilized laser at this limit by compensating the intrinsic thermal expansion, allowing a sub-25 Hz linewidth and a 32 Hz Allan deviation. We also reveal the environmental sensitivities of the resonator at the thermodynamical noise limit and long-term frequency drifts governed by random-walk-noise statistics.

Bibliography

Lim, J., Savchenkov, A. A., Dale, E., Liang, W., Eliyahu, D., Ilchenko, V., Matsko, A. B., Maleki, L., & Wong, C. W. (2017). Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nature Communications, 8(1).

Authors 9
  1. Jinkang Lim (first)
  2. Anatoliy A. Savchenkov (additional)
  3. Elijah Dale (additional)
  4. Wei Liang (additional)
  5. Danny Eliyahu (additional)
  6. Vladimir Ilchenko (additional)
  7. Andrey B. Matsko (additional)
  8. Lute Maleki (additional)
  9. Chee Wei Wong (additional)
References 30 Referenced 186
  1. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible laser with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999). (10.1103/PhysRevLett.82.3799) / Phys. Rev. Lett. by BC Young (1999)
  2. Parthey, C. G. et al. Improved measurement of the hydrogen 1S-2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011). (10.1103/PhysRevLett.107.203001) / Phys. Rev. Lett. by CG Parthey (2011)
  3. Takamoto, M., Hong, F.-L., Higashi, R. & Katori, H. An optical lattice clock. Nature 435, 321–324 (2005). (10.1038/nature03541) / Nature by M Takamoto (2005)
  4. Hollberg, L. et al. Optical frequency/wavelength reference. J. Phys. B: At. Mol. Opt. Phys. 38, S469–S495 (2005). (10.1088/0953-4075/38/9/003) / J. Phys. B: At. Mol. Opt. Phys. by L Hollberg (2005)
  5. Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103s. Phys. Rev. Lett. 109, 230801 (2012). (10.1103/PhysRevLett.109.230801) / Phys. Rev. Lett. by TL Nicholson (2012)
  6. Abbott, B. P. et al. LIGO: the laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 72, 076901 (2009). (10.1088/0034-4885/72/7/076901) / Rep. Prog. Phys. by BP Abbott (2009)
  7. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011). (10.1038/nphoton.2011.121) / Nat. Photon. by TM Fortier (2011)
  8. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 351–356 (2009). (10.1038/nphoton.2009.94) / Nat. Photon. by I Coddington (2009)
  9. Thorpe, M. J., Rippe, L., Fortier, T. M., Kirchner, M. S. & Rosenband, T. Frequency stabilization to 6×10−16 via spectral-hole burning. Nat. Photon. 5, 688–693 (2011). (10.1038/nphoton.2011.215) / Nat. Photon. by MJ Thorpe (2011)
  10. Notcutt, M., Ma, L. S., Ye, J. & Hall, J. L. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 30, 1815–1817 (2005). (10.1364/OL.30.001815) / Opt. Lett. by M Notcutt (2005)
  11. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon. 6, 687–692 (2012). (10.1038/nphoton.2012.217) / Nat. Photon. by T Kessler (2012)
  12. Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004). (10.1103/PhysRevLett.93.250602) / Phys. Rev. Lett. by K Numata (2004)
  13. Cole, G. D., Zhang, W., Martin, M. J., Ye, J. & Aspelmeyer, M. Tenfold reduction of Brownian noise in high reflectivity optical coating. Nat. Photon. 7, 644–650 (2013). (10.1038/nphoton.2013.174) / Nat. Photon. by GD Cole (2013)
  14. Alnis, J., Matveev, A., Kolachevsky, N., Udem, Th & Hänsch, T. W. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities. Phys. Rev. A 77, 053809 (2008). (10.1103/PhysRevA.77.053809) / Phys. Rev. A by J Alnis (2008)
  15. Fox., R. W. Temperature analysis of low-expansion Fabry-Perot cavities. Opt. Express 17, 15023–15031 (2009). (10.1364/OE.17.015023) / Opt. Express by RW Fox. (2009)
  16. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003). (10.1038/nature01371) / Nature by DK Armani (2003)
  17. Grudinin, I. S. et al. Ultrahigh Q crystalline microcavities. Opt. Commun. 265, 33–38 (2006). (10.1016/j.optcom.2006.03.028) / Opt. Commun. by IS Grudinin (2006)
  18. Vassiliev, V. V. et al. Narrow-line-width diode laser with a high-Q microresonator. Opt. Commun. 158, 305–312 (1998). (10.1016/S0030-4018(98)00578-1) / Opt. Commun. by VV Vassiliev (1998)
  19. Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 2468 (2015). / Nat. Commun. by W Liang (2015)
  20. Savchenkov, A. A. et al. Stabilization of a Kerr comb oscillator. Opt. Lett. 38, 2636–2639 (2013). (10.1364/OL.38.002636) / Opt. Lett. by AA Savchenkov (2013)
  21. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014). (10.1364/OPTICA.1.000010) / Optica by SB Papp (2014)
  22. Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B. 21, 697–705 (2004). (10.1364/JOSAB.21.000697) / J. Opt. Soc. Am. B. by ML Gorodetsky (2004)
  23. Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B. 24, 1324–1335 (2007). (10.1364/JOSAB.24.001324) / J. Opt. Soc. Am. B. by AB Matsko (2007)
  24. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt. Soc. Am. B. 24, 2988–2997 (2007). (10.1364/JOSAB.24.002988) / Stabilization. J. Opt. Soc. Am. B. by AA Savchenkov (2007)
  25. Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A. 84, 011804 (2011). (10.1103/PhysRevA.84.011804) / Phys. Rev. A. by J Alnis (2011)
  26. Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013). (10.1038/ncomms3468) / Nat. Commun. by H Lee (2013)
  27. Strekalov, D. V., Thompson, R. J., Baumgartel, Grudinin, I. S. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495–14501 (2011). (10.1364/OE.19.014495) / Opt. Express by DV Strekalov (2011)
  28. Fescenko, I. et al. Dual mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Opt. Express 20, 19185–19193 (2012). (10.1364/OE.20.019185) / Opt. Express by I Fescenko (2012)
  29. Drever, R. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B. 31, 97–1065 (1983). / ApplPhys. B. by R Drever (1983)
  30. Teraoka, I. & Arnold, S. Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J. Opt. Soc. Am. B. 20, 1937–1945 (2003). (10.1364/JOSAB.20.001937) / J. Opt. Soc. Am. B. by I Teraoka (2003)
Dates
Type When
Created 8 years, 5 months ago (March 24, 2017, 6:07 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 2:14 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 5, 2025, 9:05 a.m.)
Issued 8 years, 4 months ago (March 31, 2017)
Published 8 years, 4 months ago (March 31, 2017)
Published Online 8 years, 4 months ago (March 31, 2017)
Funders 0

None

@article{Lim_2017, title={Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/s41467-017-00021-9}, DOI={10.1038/s41467-017-00021-9}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lim, Jinkang and Savchenkov, Anatoliy A. and Dale, Elijah and Liang, Wei and Eliyahu, Danny and Ilchenko, Vladimir and Matsko, Andrey B. and Maleki, Lute and Wong, Chee Wei}, year={2017}, month=mar }