Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Rangasamy, D., Greaves, I., & Tremethick, D. J. (2004). RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nature Structural & Molecular Biology, 11(7), 650–655.

Authors 3
  1. Danny Rangasamy (first)
  2. Ian Greaves (additional)
  3. David J Tremethick (additional)
References 27 Referenced 191
  1. Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001). (10.1016/S0960-9822(01)00329-3) / Curr. Biol. by R Faast (2001)
  2. Santisteban, M.S., Kalashnikova, T. & Smith, M.M. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103, 411–422 (2000). (10.1016/S0092-8674(00)00133-1) / Cell by MS Santisteban (2000)
  3. Meneghini, M.D., Wu, M. & Madhani, H.D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003). (10.1016/S0092-8674(03)00123-5) / Cell by MD Meneghini (2003)
  4. Madigan, J.P., Chotkowski, H.L. & Glaser, R.L. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 30, 3698–3705 (2002). (10.1093/nar/gkf496) / Nucleic Acids Res. by JP Madigan (2002)
  5. Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D.J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 22, 1599–1607 (2003). (10.1093/emboj/cdg160) / EMBO J. by D Rangasamy (2003)
  6. Leach, T.J. et al. Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J. Biol. Chem. 275, 23267–23272 (2000). (10.1074/jbc.M910206199) / J. Biol. Chem. by TJ Leach (2000)
  7. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996). (10.1073/pnas.93.8.3346) / Proc. Natl. Acad. Sci. USA by D No (1996)
  8. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002). (10.1016/S1097-2765(02)00541-5) / Mol. Cell by Y Zeng (2002)
  9. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001). (10.1038/35078107) / Nature by SM Elbashir (2001)
  10. Ekwall, K., Cranston, G. & Allshire, R.C. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153, 1153–1169 (1999). (10.1093/genetics/153.3.1153) / Genetics by K Ekwall (1999)
  11. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002). (10.1038/ng843) / Nat. Genet. by C Maison (2002)
  12. Cimini, D., Mattiuzzo, M., Torosantucci, L. & Degrassi, F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol. Biol. Cell 14, 3821–3833 (2003). (10.1091/mbc.e03-01-0860) / Mol. Biol. Cell by D Cimini (2003)
  13. Ekwall, K. et al. The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429–1431 (1995). (10.1126/science.7660126) / Science by K Ekwall (1995)
  14. Carr, A.M. et al. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol. Gen. Genet. 245, 628–635 (1994). (10.1007/BF00282226) / Mol. Gen. Genet. by AM Carr (1994)
  15. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4, 89–93 (2002). (10.1038/ncb739) / Nat. Cell Biol. by N Nonaka (2002)
  16. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002). (10.1126/science.1074757) / Science by K Nasmyth (2002)
  17. Bernard, P. & Allshire, R. Centromeres become unstuck without heterochromatin. Trends Cell Biol. 12, 419–424 (2002). (10.1016/S0962-8924(02)02344-9) / Trends Cell Biol. by P Bernard (2002)
  18. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425–435 (2000). (10.1016/S0092-8674(00)00048-9) / Cell by C Antonio (2000)
  19. Levesque, A.A. & Compton, D.A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001). (10.1083/jcb.200106093) / J. Cell Biol. by AA Levesque (2001)
  20. Adams, R.R., Carmena, M. & Earnshaw, W.C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001). (10.1016/S0962-8924(00)01880-8) / Trends Cell Biol. by RR Adams (2001)
  21. Pinto, I. & Winston, F. Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J. 19, 1598–1612 (2000). (10.1093/emboj/19.7.1598) / EMBO J. by I Pinto (2000)
  22. de la Barre, A.E., Angelov, D., Molla, A. & Dimitrov, S. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation. EMBO J. 20, 6383–6393 (2001). (10.1093/emboj/20.22.6383) / EMBO J. by AE de la Barre (2001)
  23. Fan, J.Y., Gordon, F., Luger, K., Hansen, J.C. & Tremethick, D.J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat. Struct. Biol. 9, 172–176 (2002). (10.1038/nsb0402-316b) / Nat. Struct. Biol. by JY Fan (2002)
  24. Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500 (2002). (10.1038/nbt0502-497) / Nat. Biotechnol. by M Miyagishi (2002)
  25. Minc, E., Allory, Y., Courvalin, J.C. & Buendia, B. Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci. 23, 171–174 (2001). (10.1023/A:1013168323754) / Methods Cell Sci. by E Minc (2001)
  26. Gruss, O.J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002). (10.1038/ncb870) / Nat. Cell Biol. by OJ Gruss (2002)
  27. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. & Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932, (2004). (10.1073/pnas.0306111101) / Proc. Natl. Acad. Sci. by S Gupta (2004)
Dates
Type When
Created 21 years, 2 months ago (June 13, 2004, 1:36 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:53 a.m.)
Indexed 1 month, 3 weeks ago (July 2, 2025, 3:08 p.m.)
Issued 21 years, 2 months ago (June 13, 2004)
Published 21 years, 2 months ago (June 13, 2004)
Published Online 21 years, 2 months ago (June 13, 2004)
Published Print 21 years, 1 month ago (July 1, 2004)
Funders 0

None

@article{Rangasamy_2004, title={RNA interference demonstrates a novel role for H2A.Z in chromosome segregation}, volume={11}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb786}, DOI={10.1038/nsmb786}, number={7}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Rangasamy, Danny and Greaves, Ian and Tremethick, David J}, year={2004}, month=jun, pages={650–655} }