Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Lindorff-Larsen, K., Vendruscolo, M., Paci, E., & Dobson, C. M. (2004). Transition states for protein folding have native topologies despite high structural variability. Nature Structural & Molecular Biology, 11(5), 443–449.

Authors 4
  1. Kresten Lindorff-Larsen (first)
  2. Michele Vendruscolo (additional)
  3. Emanuele Paci (additional)
  4. Christopher M Dobson (additional)
References 50 Referenced 79
  1. Dobson, C.M. & Karplus, M. The fundamentals of protein folding: Bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92–101 (1999). (10.1016/S0959-440X(99)80012-8) / Curr. Opin. Struct. Biol. by CM Dobson (1999)
  2. Daggett, V. & Fersht, A.R. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25 (2003). (10.1016/S0968-0004(02)00012-9) / Trends Biochem. Sci. by V Daggett (2003)
  3. Vendruscolo, M. & Paci, E. Protein folding: Bringing theory and experiment closer together. Curr. Opin. Struct. Biol. 13, 82–87 (2003). (10.1016/S0959-440X(03)00007-1) / Curr. Opin. Struct. Biol. by M Vendruscolo (2003)
  4. Jackson, S.E. How do small single-domain proteins fold? Fold. Des. 3, R81–R91 (1998). (10.1016/S1359-0278(98)00033-9) / Fold. Des. by SE Jackson (1998)
  5. Grantcharova, V.P., Alm, E.J., Baker, D. & Horwich, A.L. Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70–82 (2001). (10.1016/S0959-440X(00)00176-7) / Curr. Opin. Struct. Biol. by VP Grantcharova (2001)
  6. Matouschek, A., Kellis, J.T., Serrano, L. & Fersht, A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122–126 (1989). (10.1038/340122a0) / Nature by A Matouschek (1989)
  7. Vendruscolo, M., Paci, E., Dobson, C.M. & Karplus, M. Three key residues form a critical contact network in a protein folding transition state. Nature 409, 641–645 (2001). (10.1038/35054591) / Nature by M Vendruscolo (2001)
  8. Paci, E., Vendruscolo, M., Dobson, C.M. & Karplus, M. Determination of a transition state at atomic resolution from protein engineering data. J. Mol. Biol. 324, 151–163 (2002). (10.1016/S0022-2836(02)00944-0) / J. Mol. Biol. by E Paci (2002)
  9. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Obligatory steps in protein folding and the conformational diversity of the transition state. Nat. Struct. Biol. 5, 721–729 (1998). (10.1038/1418) / Nat. Struct. Biol. by JC Martinez (1998)
  10. Riddle, D.S. et al. Experiment and theory highlight role of native state topology in SH3 folding. Nat. Struct. Biol. 6, 1016–1024 (1999). (10.1038/14901) / Nat. Struct. Biol. by DS Riddle (1999)
  11. Martinez, J.C. & Serrano, L. The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nat. Struct. Biol. 6, 1010–1016 (1999). (10.1038/14896) / Nat. Struct. Biol. by JC Martinez (1999)
  12. Northey, J.G., Nardo, A.D. & Davidson, A.R. Hydrophobic core packing in the SH3 domain folding transition state. Nat. Struct. Biol. 9, 126–130 (2002). (10.1038/nsb748) / Nat. Struct. Biol. by JG Northey (2002)
  13. Northey, J.G., Maxwell, K.L. & Davidson, A.R. Protein folding kinetics beyond the Φ value: Using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state. J. Mol. Biol. 320, 389–402 (2002). (10.1016/S0022-2836(02)00445-X) / J. Mol. Biol. by JG Northey (2002)
  14. Larson, S.M. & Davidson, A.R. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Protein Sci. 9, 2170–2180 (2000). (10.1110/ps.9.11.2170) / Protein Sci. by SM Larson (2000)
  15. Ventura, S. et al. Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat. Struct. Biol. 9, 485–493 (2002). (10.1038/nsb799) / Nat. Struct. Biol. by S Ventura (2002)
  16. Fersht, A.R., Itzhaki, L.S., elMasry, N.F., Matthews, J.M. & Otzen, D.E. Single versus parallel pathways of protein folding and fractional structure in the transition state. Proc. Natl. Acad. Sci. USA 91, 10426–10429 (1994). (10.1073/pnas.91.22.10426) / Proc. Natl. Acad. Sci. USA by AR Fersht (1994)
  17. Davis, R., Dobson, C.M. & Vendruscolo, M. Determination of the structures of distinct transition state ensembles for a β-sheet peptide with parallel folding pathways. J. Chem. Phys. 117, 9510–9517 (2002). (10.1063/1.1516784) / J. Chem. Phys. by R Davis (2002)
  18. Lazaridis, T. & Karplus, M. Effective energy function for protein dynamics and thermodynamics. Proteins 35, 133–152 (1999). (10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N) / Proteins by T Lazaridis (1999)
  19. Lindorff-Larsen, K., Paci, E., Serrano, L., Dobson, C.M. & Vendruscolo, M. Calculation of mutational free energy changes in transition states for protein folding. Biophys. J. 85, 1207–1214 (2003). (10.1016/S0006-3495(03)74556-1) / Biophys. J. by K Lindorff-Larsen (2003)
  20. Schwieters, C.D. & Clore, G.M. Reweighted atomic densities to represent ensembles of NMR structures. J. Biomol. NMR 23, 221–225 (2002). (10.1023/A:1019875223132) / J. Biomol. NMR by CD Schwieters (2002)
  21. Gsponer, J. & Caflisch, A. Molecular dynamics simulations of protein folding from the transition state. Proc. Natl. Acad. Sci. USA 99, 6719–6724 (2002). (10.1073/pnas.092686399) / Proc. Natl. Acad. Sci. USA by J Gsponer (2002)
  22. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995). / J. Mol. Biol. by AG Murzin (1995)
  23. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–602 (1996). (10.1126/science.273.5275.595) / Science by L Holm (1996)
  24. Brenner, S.E., Koehl, P. & Levitt, M. The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Res. 28, 254–256 (2000). (10.1093/nar/28.1.254) / Nucleic Acids Res. by SE Brenner (2000)
  25. Dietmann, S., Fernandez-Fuentes, N. & Holm, L. Automatic detection of remote homology. Curr. Opin. Struct. Biol. 12, 362–367 (2002). (10.1016/S0959-440X(02)00332-9) / Curr. Opin. Struct. Biol. by S Dietmann (2002)
  26. Debe, D.A., Carlson, M.J. & Goddard III, W.A. The topomer-sampling model of protein folding. Proc. Natl. Acad. Sci. USA 96, 2596–2601 (1999). (10.1073/pnas.96.6.2596) / Proc. Natl. Acad. Sci. USA by DA Debe (1999)
  27. Makarov, D.E. & Plaxco, K.W. The topomer search model: A simple, quantitative theory of two-state protein folding kinetics. Protein Sci. 12, 17–26 (2003). (10.1110/ps.0220003) / Protein Sci. by DE Makarov (2003)
  28. Khorasanizadeh, S., Peters, I.D. & Roder, H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat. Struct. Biol. 3, 193–205 (1996). (10.1038/nsb0296-193) / Nat. Struct. Biol. by S Khorasanizadeh (1996)
  29. Poso, D., Sessions, R.B., Lorch, M. & Clarke, A.R. Progressive stabilization of intermediate and transition states in protein folding reactions by introducing surface hydrophobic residues. J. Biol. Chem. 276, 35723–35726 (2000). (10.1074/jbc.M001747200) / J. Biol. Chem. by D Poso (2000)
  30. Viguera, A.R., Vega, C. & Serrano, L. Unspecific hydrophobic stabilization of folding transition states. Proc. Natl. Acad. Sci. USA 99, 5349–5354 (2002). (10.1073/pnas.072387799) / Proc. Natl. Acad. Sci. USA by AR Viguera (2002)
  31. Cheung, M.S., García, A.E. & Onuchic, J.N. Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA 99, 685–690 (2002). (10.1073/pnas.022387699) / Proc. Natl. Acad. Sci. USA by MS Cheung (2002)
  32. Shea, J.-E., Onuchic, J.N. & Brooks 3rd., C.L. Probing the folding free energy landscape of the src-SH3 protein domain. Proc. Natl. Acad. Sci. USA 99, 16064–16068 (2002). (10.1073/pnas.242293099) / Proc. Natl. Acad. Sci. USA by J-E Shea (2002)
  33. Guo, Z., Brooks 3rd., C.L. & Boczko, E.M. Posttransition state desolvation of the hydrophobic core of the src-SH3 protein domain. Biophys. J. 85, 61–69 (2003). (10.1016/S0006-3495(03)74454-3) / Biophys. J. by Z Guo (2003)
  34. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of total static accessibility. J. Mol. Biol. 55, 379–400 (1971). (10.1016/0022-2836(71)90324-X) / J. Mol. Biol. by B Lee (1971)
  35. Müller, N. Search for a realistic view of hydrophobic effects. Acc. Chem. Res. 23, 23–28 (1990). (10.1021/ar00169a005) / Acc. Chem. Res. by N Müller (1990)
  36. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 77–83 (1999). (10.1016/S0968-0004(98)01345-0) / Trends Biochem. Sci. by RL Baldwin (1999)
  37. Andersen, C.A.F., Palmer, A.G., Brunak, S. & Rost, B. Continuum secondary structure captures protein flexibility. Structure 10, 175–184 (2002). (10.1016/S0969-2126(02)00700-1) / Structure by CAF Andersen (2002)
  38. Viguera, A.R., Jimenez, M.A., Rico, M. & Serrano, L. Conformational analysis of peptides corresponding to β-hairpins and a β-sheet that represent the entire sequence of the α-spectrin SH3 domain. J. Mol. Biol. 255, 507–521 (1996). (10.1006/jmbi.1996.0042) / J. Mol. Biol. by AR Viguera (1996)
  39. Gnanakaran, S. & Garcia, A.E. Folding of a highly conserved diverging turn motif from the SH3 domain. Biophys. J. 84, 1548–1562 (2003). (10.1016/S0006-3495(03)74966-2) / Biophys. J. by S Gnanakaran (2003)
  40. Yi, Q., Bystroff, C., Rajagopal, P., Klevit, R.E. & Baker, D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J. Mol. Biol. 283, 293–300 (1998). (10.1006/jmbi.1998.2072) / J. Mol. Biol. by Q Yi (1998)
  41. Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small world' networks. Nature 393, 440–442 (1998). (10.1038/30918) / Nature by DJ Watts (1998)
  42. Vendruscolo, M., Dokholyan, N.V., Paci, E. & Karplus, M. Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65, 061910 (2002). (10.1103/PhysRevE.65.061910) / Phys. Rev. E by M Vendruscolo (2002)
  43. Grantcharova, V.P., Riddle, D.S. & Baker, D. Long-range order in the src SH3 folding transition state. Proc. Natl. Acad. Sci. USA 97, 7084–7089 (2000). (10.1073/pnas.97.13.7084) / Proc. Natl. Acad. Sci. USA by VP Grantcharova (2000)
  44. Ikeda, K., Galzitskaya, O.V., Nakamura, H. & Higo, J. β-Hairpins, α-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal β-hairpin of SH3 domain. J. Comp. Chem. 24, 310–318 (2003). (10.1002/jcc.10160) / J. Comp. Chem. by K Ikeda (2003)
  45. Larson, S.M., Di Nardo, A.A. & Davidson, A.R. Analysis of covariation in an SH3 domain sequence alignment: Applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J. Mol. Biol. 303, 433–446 (2000). (10.1006/jmbi.2000.4146) / J. Mol. Biol. by SM Larson (2000)
  46. Cobos, E.S. et al. A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core. J. Mol. Biol. 328, 221–122 (2003). (10.1016/S0022-2836(03)00273-0) / J. Mol. Biol. by ES Cobos (2003)
  47. Yi, Q., Rajagopal, P., Klevit, R.E. & Baker, D. Structural and kinetic characterization of the simplified SH3 domain FP1. Protein Sci. 12, 776–783 (2003). (10.1110/ps.0238603) / Protein Sci. by Q Yi (2003)
  48. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983). (10.1002/jcc.540040211) / J. Comp. Chem. by BR Brooks (1983)
  49. Neria, E., Fischer, S. & Karplus, M. Simulation of activation free energies in molecular dynamics system. J. Chem. Phys. 105, 1902–1921 (1996). (10.1063/1.472061) / J. Chem. Phys. by E Neria (1996)
  50. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000). (10.1093/bioinformatics/16.6.566) / Bioinformatics by L Holm (2000)
Dates
Type When
Created 21 years, 4 months ago (April 21, 2004, 5:45 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:53 a.m.)
Indexed 1 year, 5 months ago (March 11, 2024, 7:06 p.m.)
Issued 21 years, 4 months ago (April 18, 2004)
Published 21 years, 4 months ago (April 18, 2004)
Published Online 21 years, 4 months ago (April 18, 2004)
Published Print 21 years, 4 months ago (May 1, 2004)
Funders 0

None

@article{Lindorff_Larsen_2004, title={Transition states for protein folding have native topologies despite high structural variability}, volume={11}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb765}, DOI={10.1038/nsmb765}, number={5}, journal={Nature Structural &amp; Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Lindorff-Larsen, Kresten and Vendruscolo, Michele and Paci, Emanuele and Dobson, Christopher M}, year={2004}, month=apr, pages={443–449} }