Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Reissmann, S., Parnot, C., Booth, C. R., Chiu, W., & Frydman, J. (2007). Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nature Structural & Molecular Biology, 14(5), 432–440.

Authors 5
  1. Stefanie Reissmann (first)
  2. Charles Parnot (additional)
  3. Christopher R Booth (additional)
  4. Wah Chiu (additional)
  5. Judith Frydman (additional)
References 41 Referenced 90
  1. Young, J.C., Agashe, V.R., Siegers, K. & Hartl, F.U. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004). (10.1038/nrm1492) / Nat. Rev. Mol. Cell Biol. by JC Young (2004)
  2. Horwich, A.L., Farr, G.W. & Fenton, W.A. GroEL-GroES-mediated protein folding. Chem. Rev. 106, 1917–1930 (2006). (10.1021/cr040435v) / Chem. Rev. by AL Horwich (2006)
  3. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001). (10.1146/annurev.biochem.70.1.603) / Annu. Rev. Biochem. by J Frydman (2001)
  4. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998). (10.1016/S0092-8674(00)80928-9) / Cell by B Bukau (1998)
  5. Sigler, P.B. et al. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581–608 (1998). (10.1146/annurev.biochem.67.1.581) / Annu. Rev. Biochem. by PB Sigler (1998)
  6. Gutsche, I., Essen, L.O. & Baumeister, W. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293, 295–312 (1999). (10.1006/jmbi.1999.3008) / J. Mol. Biol. by I Gutsche (1999)
  7. Spiess, C., Meyer, A.S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004). (10.1016/j.tcb.2004.09.015) / Trends Cell Biol. by C Spiess (2004)
  8. Ditzel, L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125–138 (1998). (10.1016/S0092-8674(00)81152-6) / Cell by L Ditzel (1998)
  9. Meyer, A.S. et al. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113, 369–381 (2003). (10.1016/S0092-8674(03)00307-6) / Cell by AS Meyer (2003)
  10. Shomura, Y. et al. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335, 1265–1278 (2004). (10.1016/j.jmb.2003.11.028) / J. Mol. Biol. by Y Shomura (2004)
  11. Horovitz, A., Fridmann, Y., Kafri, G. & Yifrach, O. Review: allostery in chaperonins. J. Struct. Biol. 135, 104–114 (2001). (10.1006/jsbi.2001.4377) / J. Struct. Biol. by A Horovitz (2001)
  12. Saibil, H.R., Horwich, A.L. & Fenton, W.A. Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. Adv. Protein Chem. 59, 45–72 (2001). (10.1016/S0065-3233(01)59002-6) / Adv. Protein Chem. by HR Saibil (2001)
  13. Swain, J.F. & Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 16, 102–108 (2006). (10.1016/j.sbi.2006.01.003) / Curr. Opin. Struct. Biol. by JF Swain (2006)
  14. Kafri, G. & Horovitz, A. Transient kinetic analysis of ATP-induced allosteric transitions in the eukaryotic chaperonin containing TCP-1. J. Mol. Biol. 326, 981–987 (2003). (10.1016/S0022-2836(03)00046-9) / J. Mol. Biol. by G Kafri (2003)
  15. Yifrach, O. & Horovitz, A. Transient kinetic analysis of adenosine 5′-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37, 7083–7088 (1998). (10.1021/bi980370o) / Biochemistry by O Yifrach (1998)
  16. Cliff, M.J., Limpkin, C., Cameron, A., Burston, S.G. & Clarke, A.R. Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE. J. Biol. Chem. 281, 21266–21275 (2006). (10.1074/jbc.M601605200) / J. Biol. Chem. by MJ Cliff (2006)
  17. Bigotti, M.G. & Clarke, A.R. Cooperativity in the thermosome. J. Mol. Biol. 348, 13–26 (2005). (10.1016/j.jmb.2005.01.066) / J. Mol. Biol. by MG Bigotti (2005)
  18. Bigotti, M.G., Bellamy, S.R. & Clarke, A.R. The asymmetric ATPase cycle of the thermosome: elucidation of the binding, hydrolysis and product-release steps. J. Mol. Biol. 362, 835–843 (2006). (10.1016/j.jmb.2006.07.064) / J. Mol. Biol. by MG Bigotti (2006)
  19. Yifrach, O. & Horovitz, A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995). (10.1021/bi00016a001) / Biochemistry by O Yifrach (1995)
  20. Kafri, G., Willison, K.R. & Horovitz, A. Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1. Protein Sci. 10, 445–449 (2001). (10.1110/ps.44401) / Protein Sci. by G Kafri (2001)
  21. Ranson, N.A. et al. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107, 869–879 (2001). (10.1016/S0092-8674(01)00617-1) / Cell by NA Ranson (2001)
  22. Ranson, N.A. et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 13, 147–152 (2006). (10.1038/nsmb1046) / Nat. Struct. Mol. Biol. by NA Ranson (2006)
  23. Roseman, A.M., Chen, S., White, H., Braig, K. & Saibil, H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251 (1996). (10.1016/S0092-8674(00)81342-2) / Cell by AM Roseman (1996)
  24. Inbar, E. & Horovitz, A. GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL-GroES complex. Biochemistry 36, 12276–12281 (1997). (10.1021/bi9714870) / Biochemistry by E Inbar (1997)
  25. Kusmierczyk, A.R. & Martin, J. Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem. J. 371, 669–673 (2003). (10.1042/bj20030230) / Biochem. J. by AR Kusmierczyk (2003)
  26. Kusmierczyk, A.R. & Martin, J. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Lett. 547, 201–204 (2003). (10.1016/S0014-5793(03)00722-1) / FEBS Lett. by AR Kusmierczyk (2003)
  27. Szpikowska, B.K., Swiderek, K.M., Sherman, M.A. & Mas, M.T. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains. Protein Sci. 7, 1524–1530 (1998). (10.1002/pro.5560070705) / Protein Sci. by BK Szpikowska (1998)
  28. Iizuka, R. et al. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a “two-stroke engine”. J. Biol. Chem. 280, 40375–40383 (2005). (10.1074/jbc.M506785200) / J. Biol. Chem. by R Iizuka (2005)
  29. Llorca, O. et al. 3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin. Nat. Struct. Biol. 6, 639–642 (1999). (10.1038/10689) / Nat. Struct. Biol. by O Llorca (1999)
  30. Schoehn, G., Hayes, M., Cliff, M., Clarke, A.R. & Saibil, H.R. Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. J. Mol. Biol. 301, 323–332 (2000). (10.1006/jmbi.2000.3952) / J. Mol. Biol. by G Schoehn (2000)
  31. Schoehn, G., Quaite-Randall, E., Jimenez, J.L., Joachimiak, A. & Saibil, H.R. Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. J. Mol. Biol. 296, 813–819 (2000). (10.1006/jmbi.2000.3505) / J. Mol. Biol. by G Schoehn (2000)
  32. Rivenzon-Segal, D., Wolf, S.G., Shimon, L., Willison, K.R. & Horovitz, A. Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat. Struct. Mol. Biol. 12, 233–237 (2005). (10.1038/nsmb901) / Nat. Struct. Mol. Biol. by D Rivenzon-Segal (2005)
  33. Spiess, C., Miller, E.J., McClellan, A.J. & Frydman, J. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol. Cell 24, 25–37 (2006). (10.1016/j.molcel.2006.09.003) / Mol. Cell by C Spiess (2006)
  34. Aharoni, A. & Horovitz, A. Inter-ring communication is disrupted in the GroEL mutant Arg13 → Gly; Ala126 → Val with known crystal structure. J. Mol. Biol. 258, 732–735 (1996). (10.1006/jmbi.1996.0282) / J. Mol. Biol. by A Aharoni (1996)
  35. Sewell, B.T. et al. A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation. Nat. Struct. Mol. Biol. 11, 1128–1133 (2004). (10.1038/nsmb844) / Nat. Struct. Mol. Biol. by BT Sewell (2004)
  36. Tian, G., Vainberg, I.E., Tap, W.D., Lewis, S.A. & Cowan, N.J. Specificity in chaperonin-mediated protein folding. Nature 375, 250–253 (1995). (10.1038/375250a0) / Nature by G Tian (1995)
  37. Feldman, D.E., Spiess, C., Howard, D.E. & Frydman, J. Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol. Cell 12, 1213–1224 (2003). (10.1016/S1097-2765(03)00423-4) / Mol. Cell by DE Feldman (2003)
  38. Weber, F. & Hayer-Hartl, M. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES. Methods Mol. Biol. 140, 117–126 (2000). / Methods Mol. Biol. by F Weber (2000)
  39. Frydman, J. & Hartl, F.U. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272, 1497–1502 (1996). (10.1126/science.272.5267.1497) / Science by J Frydman (1996)
  40. Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994). (10.1016/0092-8674(94)90533-9) / Cell by JS Weissman (1994)
  41. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003). (10.1093/nar/gkg520) / Nucleic Acids Res. by T Schwede (2003)
Dates
Type When
Created 18 years, 4 months ago (April 25, 2007, 3:14 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:50 a.m.)
Indexed 1 year ago (Aug. 4, 2024, 1:17 a.m.)
Issued 18 years, 3 months ago (April 29, 2007)
Published 18 years, 3 months ago (April 29, 2007)
Published Online 18 years, 3 months ago (April 29, 2007)
Published Print 18 years, 3 months ago (May 1, 2007)
Funders 0

None

@article{Reissmann_2007, title={Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins}, volume={14}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb1236}, DOI={10.1038/nsmb1236}, number={5}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Reissmann, Stefanie and Parnot, Charles and Booth, Christopher R and Chiu, Wah and Frydman, Judith}, year={2007}, month=apr, pages={432–440} }