Crossref
journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
References
39
Referenced
35
-
Wilson, C., Connolly, T., Morrison, T. & Gilmore, R. Integration of membrane proteins into the endoplasmic reticulum requires GTP. J. Cell Biol. 107, 69–77 (1988).
(
10.1083/jcb.107.1.69
) / J. Cell Biol. by C Wilson (1988) -
Do, H., Falcone, D., Lin, J., Andrews, D.W. & Johnson, A.E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).
(
10.1016/S0092-8674(00)81115-0
) / Cell by H Do (1996) -
Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T.A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).
(
10.1016/S0092-8674(00)00028-3
) / Cell by SU Heinrich (2000) -
Beltzer, J.P. et al. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J. Biol. Chem. 266, 973–978 (1991).
(
10.1016/S0021-9258(17)35269-9
) / J. Biol. Chem. by JP Beltzer (1991) -
Hartmann, E., Rapoport, T.A. & Lodish, H.F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA 86, 5786–5790 (1989).
(
10.1073/pnas.86.15.5786
) / Proc. Natl. Acad. Sci. USA by E Hartmann (1989) -
Wahlberg, J.M. & Spiess, M. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol. 137, 555–562 (1997).
(
10.1083/jcb.137.3.555
) / J. Cell Biol. by JM Wahlberg (1997) -
Denzer, A.J., Nabholz, C.E. & Spiess, M. Transmembrane orientation of signal anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J. 14, 6311–6317 (1995).
(
10.1002/j.1460-2075.1995.tb00321.x
) / EMBO J. by AJ Denzer (1995) -
Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523–533 (1997).
(
10.1016/S0092-8674(00)80234-2
) / Cell by W Mothes (1997) -
Heinrich, S.U. & Rapoport, T.A. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654–3663 (2003).
(
10.1093/emboj/cdg346
) / EMBO J. by SU Heinrich (2003) -
McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A.E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003).
(
10.1016/S1097-2765(03)00304-6
) / Mol. Cell by PJ McCormick (2003) -
Sadlish, H., Pitonzo, D., Johnson, A.E. & Skach, W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878 (2005).
(
10.1038/nsmb994
) / Nat. Struct. Mol. Biol. by H Sadlish (2005) -
Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).
(
10.1016/S0092-8674(00)80311-6
) / Cell by S Liao (1997) -
Haigh, N.G. & Johnson, A.E. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J. Cell Biol. 156, 261–270 (2002).
(
10.1083/jcb.200110074
) / J. Cell Biol. by NG Haigh (2002) -
Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).
(
10.1016/S0092-8674(04)00169-2
) / Cell by CA Woolhead (2004) -
Plath, K., Mothes, W., Wilkinson, B.M., Stirling, C.J. & Rapoport, T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998).
(
10.1016/S0092-8674(00)81738-9
) / Cell by K Plath (1998) -
Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).
(
10.1038/nature02218
) / Nature by B Van den Berg (2004) -
Rapoport, T.A., Goder, V., Heinrich, S.U. & Matlack, K.E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004).
(
10.1016/j.tcb.2004.09.002
) / Trends Cell Biol. by TA Rapoport (2004) -
Morgan, D.G., Menetret, J.F., Neuhof, A., Rapoport, T.A. & Akey, C.W. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886 (2002).
(
10.1016/S0022-2836(02)01111-7
) / J. Mol. Biol. by DG Morgan (2002) -
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).
(
10.1016/S0092-8674(01)00541-4
) / Cell by R Beckmann (2001) -
Johnsson, N. & Varshavsky, A. Ubiquitin-assisted dissection of protein transport across membranes. EMBO J. 13, 2686–2698 (1994).
(
10.1002/j.1460-2075.1994.tb06559.x
) / EMBO J. by N Johnsson (1994) -
Ng, D.T., Brown, J.D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum. J. Cell Biol. 134, 269–278 (1996).
(
10.1083/jcb.134.2.269
) / J. Cell Biol. by DT Ng (1996) -
Mason, N., Ciufo, L.F. & Brown, J.D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19, 4164–4174 (2000).
(
10.1093/emboj/19.15.4164
) / EMBO J. by N Mason (2000) -
Jungnickel, B. & Rapoport, T.A. A posttranslational signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995).
(
10.1016/0092-8674(95)90313-5
) / Cell by B Jungnickel (1995) -
Belin, D., Bost, S., Vassalli, J.D. & Strub, K. A two-step recognition of signal sequences determines the translocation efficiency of proteins. EMBO J. 15, 468–478 (1996).
(
10.1002/j.1460-2075.1996.tb00379.x
) / EMBO J. by D Belin (1996) -
Goder, V. & Spiess, M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J. 22, 3645–3653 (2003).
(
10.1093/emboj/cdg361
) / EMBO J. by V Goder (2003) -
Ogg, S.C., Barz, W.P. & Walter, P. A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor β-subunit. J. Cell Biol. 142, 341–354 (1998).
(
10.1083/jcb.142.2.341
) / J. Cell Biol. by SC Ogg (1998) -
Cheng, Z., Jiang, Y., Mandon, E.C. & Gilmore, R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol. 168, 67–77 (2005).
(
10.1083/jcb.200408188
) / J. Cell Biol. by Z Cheng (2005) -
Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).
(
10.1073/pnas.91.22.10340
) / Proc. Natl. Acad. Sci. USA by N Johnsson (1994) -
Goder, V., Crottet, P. & Spiess, M. In vivo kinetics of protein targeting to the endoplasmic reticulum determined by site-specific phosphorylation. EMBO J. 19, 6704–6712 (2000).
(
10.1093/emboj/19.24.6704
) / EMBO J. by V Goder (2000) -
Connolly, T., Collins, P. & Gilmore, R. Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes. J. Cell Biol. 108, 299–307 (1989).
(
10.1083/jcb.108.2.299
) / J. Cell Biol. by T Connolly (1989) -
Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).
(
10.1016/0092-8674(93)90640-C
) / Cell by KS Crowley (1993) -
Braakman, I., Hoover-Litty, H., Wagner, K.R. & Helenius, A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol. 114, 401–411 (1991).
(
10.1083/jcb.114.3.401
) / J. Cell Biol. by I Braakman (1991) -
Hershey, J.W. Translational control in mammalian cells. Annu. Rev. Biochem. 60, 717–755 (1991).
(
10.1146/annurev.bi.60.070191.003441
) / Annu. Rev. Biochem. by JW Hershey (1991) -
Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore. Cell 78, 461–471 (1994).
(
10.1016/0092-8674(94)90424-3
) / Cell by KS Crowley (1994) -
Buck, T.M. & Skach, W.R. Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J. Biol. Chem. 280, 261–269 (2005).
(
10.1074/jbc.M409920200
) / J. Biol. Chem. by TM Buck (2005) -
Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).
(
10.1038/nature03216
) / Nature by T Hessa (2005) -
Green, N. & Walter, P. C-terminal sequences can inhibit the insertion of membrane proteins into the endoplasmic reticulum of Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 276–282 (1992).
(
10.1128/MCB.12.1.276
) / Mol. Cell. Biol. by N Green (1992) -
Kim, H., Melen, K. & von Heijne, G. Topology models for 37 Saccharomyces cerevisiae membrane proteins based on C-terminal reporter fusions and predictions. J. Biol. Chem. 278, 10208–10213 (2003).
(
10.1074/jbc.M300163200
) / J. Biol. Chem. by H Kim (2003) -
Rothblatt, J. & Schekman, R. A hitchhiker's guide to the analysis of the secretory pathway in yeast. Methods Cell Biol. 32, 3–36 (1989).
(
10.1016/S0091-679X(08)61165-6
) / Methods Cell Biol. by J Rothblatt (1989)
Dates
Type | When |
---|---|
Created | 18 years, 11 months ago (Sept. 17, 2006, 1:53 p.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:49 a.m.) |
Indexed | 1 year ago (Aug. 10, 2024, 10:06 p.m.) |
Issued | 18 years, 11 months ago (Sept. 17, 2006) |
Published | 18 years, 11 months ago (Sept. 17, 2006) |
Published Online | 18 years, 11 months ago (Sept. 17, 2006) |
Published Print | 18 years, 11 months ago (Oct. 1, 2006) |
@article{Cheng_2006, title={Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration}, volume={13}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb1146}, DOI={10.1038/nsmb1146}, number={10}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Cheng, Zhiliang and Gilmore, Reid}, year={2006}, month=sep, pages={930–936} }