Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Cheng, Z., & Gilmore, R. (2006). Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration. Nature Structural & Molecular Biology, 13(10), 930–936.

Authors 2
  1. Zhiliang Cheng (first)
  2. Reid Gilmore (additional)
References 39 Referenced 35
  1. Wilson, C., Connolly, T., Morrison, T. & Gilmore, R. Integration of membrane proteins into the endoplasmic reticulum requires GTP. J. Cell Biol. 107, 69–77 (1988). (10.1083/jcb.107.1.69) / J. Cell Biol. by C Wilson (1988)
  2. Do, H., Falcone, D., Lin, J., Andrews, D.W. & Johnson, A.E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996). (10.1016/S0092-8674(00)81115-0) / Cell by H Do (1996)
  3. Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T.A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000). (10.1016/S0092-8674(00)00028-3) / Cell by SU Heinrich (2000)
  4. Beltzer, J.P. et al. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J. Biol. Chem. 266, 973–978 (1991). (10.1016/S0021-9258(17)35269-9) / J. Biol. Chem. by JP Beltzer (1991)
  5. Hartmann, E., Rapoport, T.A. & Lodish, H.F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA 86, 5786–5790 (1989). (10.1073/pnas.86.15.5786) / Proc. Natl. Acad. Sci. USA by E Hartmann (1989)
  6. Wahlberg, J.M. & Spiess, M. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol. 137, 555–562 (1997). (10.1083/jcb.137.3.555) / J. Cell Biol. by JM Wahlberg (1997)
  7. Denzer, A.J., Nabholz, C.E. & Spiess, M. Transmembrane orientation of signal anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J. 14, 6311–6317 (1995). (10.1002/j.1460-2075.1995.tb00321.x) / EMBO J. by AJ Denzer (1995)
  8. Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523–533 (1997). (10.1016/S0092-8674(00)80234-2) / Cell by W Mothes (1997)
  9. Heinrich, S.U. & Rapoport, T.A. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654–3663 (2003). (10.1093/emboj/cdg346) / EMBO J. by SU Heinrich (2003)
  10. McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A.E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003). (10.1016/S1097-2765(03)00304-6) / Mol. Cell by PJ McCormick (2003)
  11. Sadlish, H., Pitonzo, D., Johnson, A.E. & Skach, W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878 (2005). (10.1038/nsmb994) / Nat. Struct. Mol. Biol. by H Sadlish (2005)
  12. Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997). (10.1016/S0092-8674(00)80311-6) / Cell by S Liao (1997)
  13. Haigh, N.G. & Johnson, A.E. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J. Cell Biol. 156, 261–270 (2002). (10.1083/jcb.200110074) / J. Cell Biol. by NG Haigh (2002)
  14. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004). (10.1016/S0092-8674(04)00169-2) / Cell by CA Woolhead (2004)
  15. Plath, K., Mothes, W., Wilkinson, B.M., Stirling, C.J. & Rapoport, T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998). (10.1016/S0092-8674(00)81738-9) / Cell by K Plath (1998)
  16. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). (10.1038/nature02218) / Nature by B Van den Berg (2004)
  17. Rapoport, T.A., Goder, V., Heinrich, S.U. & Matlack, K.E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004). (10.1016/j.tcb.2004.09.002) / Trends Cell Biol. by TA Rapoport (2004)
  18. Morgan, D.G., Menetret, J.F., Neuhof, A., Rapoport, T.A. & Akey, C.W. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886 (2002). (10.1016/S0022-2836(02)01111-7) / J. Mol. Biol. by DG Morgan (2002)
  19. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001). (10.1016/S0092-8674(01)00541-4) / Cell by R Beckmann (2001)
  20. Johnsson, N. & Varshavsky, A. Ubiquitin-assisted dissection of protein transport across membranes. EMBO J. 13, 2686–2698 (1994). (10.1002/j.1460-2075.1994.tb06559.x) / EMBO J. by N Johnsson (1994)
  21. Ng, D.T., Brown, J.D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum. J. Cell Biol. 134, 269–278 (1996). (10.1083/jcb.134.2.269) / J. Cell Biol. by DT Ng (1996)
  22. Mason, N., Ciufo, L.F. & Brown, J.D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19, 4164–4174 (2000). (10.1093/emboj/19.15.4164) / EMBO J. by N Mason (2000)
  23. Jungnickel, B. & Rapoport, T.A. A posttranslational signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995). (10.1016/0092-8674(95)90313-5) / Cell by B Jungnickel (1995)
  24. Belin, D., Bost, S., Vassalli, J.D. & Strub, K. A two-step recognition of signal sequences determines the translocation efficiency of proteins. EMBO J. 15, 468–478 (1996). (10.1002/j.1460-2075.1996.tb00379.x) / EMBO J. by D Belin (1996)
  25. Goder, V. & Spiess, M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J. 22, 3645–3653 (2003). (10.1093/emboj/cdg361) / EMBO J. by V Goder (2003)
  26. Ogg, S.C., Barz, W.P. & Walter, P. A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor β-subunit. J. Cell Biol. 142, 341–354 (1998). (10.1083/jcb.142.2.341) / J. Cell Biol. by SC Ogg (1998)
  27. Cheng, Z., Jiang, Y., Mandon, E.C. & Gilmore, R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol. 168, 67–77 (2005). (10.1083/jcb.200408188) / J. Cell Biol. by Z Cheng (2005)
  28. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994). (10.1073/pnas.91.22.10340) / Proc. Natl. Acad. Sci. USA by N Johnsson (1994)
  29. Goder, V., Crottet, P. & Spiess, M. In vivo kinetics of protein targeting to the endoplasmic reticulum determined by site-specific phosphorylation. EMBO J. 19, 6704–6712 (2000). (10.1093/emboj/19.24.6704) / EMBO J. by V Goder (2000)
  30. Connolly, T., Collins, P. & Gilmore, R. Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes. J. Cell Biol. 108, 299–307 (1989). (10.1083/jcb.108.2.299) / J. Cell Biol. by T Connolly (1989)
  31. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993). (10.1016/0092-8674(93)90640-C) / Cell by KS Crowley (1993)
  32. Braakman, I., Hoover-Litty, H., Wagner, K.R. & Helenius, A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol. 114, 401–411 (1991). (10.1083/jcb.114.3.401) / J. Cell Biol. by I Braakman (1991)
  33. Hershey, J.W. Translational control in mammalian cells. Annu. Rev. Biochem. 60, 717–755 (1991). (10.1146/annurev.bi.60.070191.003441) / Annu. Rev. Biochem. by JW Hershey (1991)
  34. Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore. Cell 78, 461–471 (1994). (10.1016/0092-8674(94)90424-3) / Cell by KS Crowley (1994)
  35. Buck, T.M. & Skach, W.R. Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J. Biol. Chem. 280, 261–269 (2005). (10.1074/jbc.M409920200) / J. Biol. Chem. by TM Buck (2005)
  36. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005). (10.1038/nature03216) / Nature by T Hessa (2005)
  37. Green, N. & Walter, P. C-terminal sequences can inhibit the insertion of membrane proteins into the endoplasmic reticulum of Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 276–282 (1992). (10.1128/MCB.12.1.276) / Mol. Cell. Biol. by N Green (1992)
  38. Kim, H., Melen, K. & von Heijne, G. Topology models for 37 Saccharomyces cerevisiae membrane proteins based on C-terminal reporter fusions and predictions. J. Biol. Chem. 278, 10208–10213 (2003). (10.1074/jbc.M300163200) / J. Biol. Chem. by H Kim (2003)
  39. Rothblatt, J. & Schekman, R. A hitchhiker's guide to the analysis of the secretory pathway in yeast. Methods Cell Biol. 32, 3–36 (1989). (10.1016/S0091-679X(08)61165-6) / Methods Cell Biol. by J Rothblatt (1989)
Dates
Type When
Created 18 years, 11 months ago (Sept. 17, 2006, 1:53 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:49 a.m.)
Indexed 1 year ago (Aug. 10, 2024, 10:06 p.m.)
Issued 18 years, 11 months ago (Sept. 17, 2006)
Published 18 years, 11 months ago (Sept. 17, 2006)
Published Online 18 years, 11 months ago (Sept. 17, 2006)
Published Print 18 years, 11 months ago (Oct. 1, 2006)
Funders 0

None

@article{Cheng_2006, title={Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration}, volume={13}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb1146}, DOI={10.1038/nsmb1146}, number={10}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Cheng, Zhiliang and Gilmore, Reid}, year={2006}, month=sep, pages={930–936} }