Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Ruthenburg, A. J., Wang, W., Graybosch, D. M., Li, H., Allis, C. D., Patel, D. J., & Verdine, G. L. (2006). Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nature Structural & Molecular Biology, 13(8), 704–712.

Authors 7
  1. Alexander J Ruthenburg (first)
  2. Wooikoon Wang (additional)
  3. Daina M Graybosch (additional)
  4. Haitao Li (additional)
  5. C David Allis (additional)
  6. Dinshaw J Patel (additional)
  7. Gregory L Verdine (additional)
References 52 Referenced 212
  1. Wang, Y. et al. Linking covalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Cold Spring Harb. Symp. Quant. Biol. 69, 161–169 (2004). (10.1101/sqb.2004.69.161) / Cold Spring Harb. Symp. Quant. Biol. by Y Wang (2004)
  2. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001). (10.1126/science.1063127) / Science by T Jenuwein (2001)
  3. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000). (10.1038/47412) / Nature by BD Strahl (2000)
  4. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005). (10.1016/j.cell.2005.01.001) / Cell by BE Bernstein (2005)
  5. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001). (10.1038/35065132) / Nature by M Lachner (2001)
  6. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001). (10.1016/S0092-8674(01)00542-6) / Cell by AH Peters (2001)
  7. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002). (10.1038/nature01080) / Nature by H Santos-Rosa (2002)
  8. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002). (10.1126/science.1076997) / Science by R Cao (2002)
  9. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002). (10.1073/pnas.082249499) / Proc. Natl. Acad. Sci. USA by BE Bernstein (2002)
  10. Briggs, S.D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001). (10.1101/gad.940201) / Genes Dev. by SD Briggs (2001)
  11. Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. USA 98, 12902–12907 (2001). (10.1073/pnas.231473398) / Proc. Natl. Acad. Sci. USA by T Miller (2001)
  12. Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002). (10.1016/S1097-2765(02)00741-4) / Mol. Cell by TA Milne (2002)
  13. Nagy, P.L., Griesenbeck, J., Kornberg, R.D. & Cleary, M.L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA 99, 90–94 (2002). (10.1073/pnas.221596698) / Proc. Natl. Acad. Sci. USA by PL Nagy (2002)
  14. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002). (10.1016/S1097-2765(02)00740-2) / Mol. Cell by T Nakamura (2002)
  15. Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001). (10.1093/emboj/20.24.7137) / EMBO J. by A Roguev (2001)
  16. Schneider, R., Bannister, A.J. & Kouzarides, T. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem. Sci. 27, 396–402 (2002). (10.1016/S0968-0004(02)02141-2) / Trends Biochem. Sci. by R Schneider (2002)
  17. Hess, J.L. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med. 10, 500–507 (2004). (10.1016/j.molmed.2004.08.005) / Trends Mol. Med. by JL Hess (2004)
  18. Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004). (10.1016/S1097-2765(04)00081-4) / Mol. Cell by CM Hughes (2004)
  19. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005). (10.1016/j.cell.2005.03.036) / Cell by J Wysocka (2005)
  20. Yu, B.D., Hess, J.L., Horning, S.E., Brown, G.A. & Korsmeyer, S.J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995). (10.1038/378505a0) / Nature by BD Yu (1995)
  21. Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl. Acad. Sci. USA 103, 6629–6634 (2006). (10.1073/pnas.0507425103) / Proc. Natl. Acad. Sci. USA by R Terranova (2006)
  22. Han, Z. et al. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell 22, 137–144 (2006). (10.1016/j.molcel.2006.03.018) / Mol. Cell by Z Han (2006)
  23. Sprague, E.R., Redd, M.J., Johnson, A.D. & Wolberger, C. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J. 19, 3016–3027 (2000). (10.1093/emboj/19.12.3016) / EMBO J. by ER Sprague (2000)
  24. Henderson, R. Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J. Mol. Biol. 54, 341–354 (1970). (10.1016/0022-2836(70)90434-1) / J. Mol. Biol. by R Henderson (1970)
  25. Li et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature advance online publication 21 May 2006. (10.1038/nature04802)
  26. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006). (10.1126/science.1125162) / Science by Y Huang (2006)
  27. Flanagan, J.F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005). (10.1038/nature04290) / Nature by JF Flanagan (2005)
  28. Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002). (10.1126/science.1069473) / Science by SA Jacobs (2002)
  29. Zhang, X. et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell 12, 177–185 (2003). (10.1016/S1097-2765(03)00224-7) / Mol. Cell by X Zhang (2003)
  30. Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421, 652–656 (2003). (10.1038/nature01378) / Nature by B Xiao (2003)
  31. Scheiner, S., Kar, T. & Gu, Y. Strength of the Calpha H.O hydrogen bond of amino acid residues. J. Biol. Chem. 276, 9832–9837 (2001). (10.1074/jbc.M010770200) / J. Biol. Chem. by S Scheiner (2001)
  32. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005). (10.1002/jcc.20290) / J. Comput. Chem. by DA Case (2005)
  33. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. (in the press). (10.1038/nsmb1128)
  34. Chin, H.G., Patnaik, D., Esteve, P.O., Jacobsen, S.E. & Pradhan, S. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis. Biochemistry 45, 3272–3284 (2006). (10.1021/bi051997r) / Biochemistry by HG Chin (2006)
  35. Hu, P. & Zhang, Y. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. J. Am. Chem. Soc. 128, 1272–1278 (2006). (10.1021/ja056153+) / J. Am. Chem. Soc. by P Hu (2006)
  36. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000). (10.1038/35020506) / Nature by S Rea (2000)
  37. Milne, T.A. et al. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA 102, 14765–14770 (2005). (10.1073/pnas.0503630102) / Proc. Natl. Acad. Sci. USA by TA Milne (2005)
  38. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 15, 57–67 (2004). (10.1016/j.molcel.2004.06.020) / Mol. Cell by R Cao (2004)
  39. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8, 96–108 (1998). (10.1016/S0960-9822(98)70040-5) / Curr. Biol. by A Verreault (1998)
  40. Chen, G. & Courey, A.J. Groucho/TLE family proteins and transcriptional repression. Gene 249, 1–16 (2000). (10.1016/S0378-1119(00)00161-X) / Gene by G Chen (2000)
  41. Ahmad, A., Takami, Y. & Nakayama, T. WD dipeptide motifs and LXXLL motif of chicken HIRA are essential for interactions with the p48 subunit of chromatin assembly factor-1 and histone deacetylase-2 in vitro and in vivo. Gene 342, 125–136 (2004). (10.1016/j.gene.2004.07.031) / Gene by A Ahmad (2004)
  42. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997). (10.1107/S0021889897006766) / J. Appl. Crystallogr. by A Vagin (1997)
  43. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001). (10.1107/S0907444901012471) / Acta Crystallogr. D Biol. Crystallogr. by RJ Read (2001)
  44. Collaborative Computational Project. Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
  45. Morris, R.J. et al. Breaking good resolutions with ARP/wARP. J. Synchrotron Radiat. 11, 56–59 (2004). (10.1107/S090904950302394X) / J. Synchrotron Radiat. by RJ Morris (2004)
  46. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998). (10.1107/S0907444998003254) / Acta Crystallogr. D Biol. Crystallogr. by AT Brunger (1998)
  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). (10.1107/S0907444904019158) / Acta Crystallogr. D Biol. Crystallogr. by P Emsley (2004)
  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997). (10.1107/S0907444996012255) / Acta Crystallogr. D Biol. Crystallogr. by GN Murshudov (1997)
  49. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001). (10.1107/S0907444900014736) / Acta Crystallogr. D Biol. Crystallogr. by MD Winn (2001)
  50. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004). (10.1107/S0907444904011679) / Acta Crystallogr. D Biol. Crystallogr. by AW Schuttelkopf (2004)
  51. Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993). (10.1107/S0021889892009944) / J. Appl. Crystallogr. by RJ Laskowski (1993)
  52. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001). (10.1073/pnas.181342398) / Proc. Natl. Acad. Sci. USA by NA Baker (2001)
Dates
Type When
Created 19 years, 1 month ago (July 9, 2006, 1:38 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:49 a.m.)
Indexed 1 month ago (July 30, 2025, 10:44 a.m.)
Issued 19 years, 1 month ago (July 9, 2006)
Published 19 years, 1 month ago (July 9, 2006)
Published Online 19 years, 1 month ago (July 9, 2006)
Published Print 19 years, 1 month ago (Aug. 1, 2006)
Funders 0

None

@article{Ruthenburg_2006, title={Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex}, volume={13}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb1119}, DOI={10.1038/nsmb1119}, number={8}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Ruthenburg, Alexander J and Wang, Wooikoon and Graybosch, Daina M and Li, Haitao and Allis, C David and Patel, Dinshaw J and Verdine, Gregory L}, year={2006}, month=jul, pages={704–712} }