Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Yan, Z., Yin, M., Xu, D., Zhu, Y., & Li, X. (2017). Structural insights into the secretin translocation channel in the type II secretion system. Nature Structural & Molecular Biology, 24(2), 177–183.

Authors 5
  1. Zhaofeng Yan (first)
  2. Meng Yin (additional)
  3. Dandan Xu (additional)
  4. Yongqun Zhu (additional)
  5. Xueming Li (additional)
References 53 Referenced 107
  1. Costa, T.R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015). (10.1038/nrmicro3456) / Nat. Rev. Microbiol. by TR Costa (2015)
  2. Korotkov, K.V., Sandkvist, M. & Hol, W.G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012). (10.1038/nrmicro2762) / Nat. Rev. Microbiol. by KV Korotkov (2012)
  3. Nivaskumar, M. & Francetic, O. Type II secretion system: a magic beanstalk or a protein escalator. Biochim. Biophys. Acta 1843, 1568–1577 (2014). (10.1016/j.bbamcr.2013.12.020) / Biochim. Biophys. Acta by M Nivaskumar (2014)
  4. Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol. 179, 6994–7003 (1997). (10.1128/jb.179.22.6994-7003.1997) / J. Bacteriol. by M Sandkvist (1997)
  5. Kulkarni, R. et al. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS One 4, e4752 (2009). (10.1371/journal.pone.0004752) / PLoS One by R Kulkarni (2009)
  6. Tauschek, M., Gorrell, R.J., Strugnell, R.A. & Robins-Browne, R.M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 7066–7071 (2002). (10.1073/pnas.092152899) / Proc. Natl. Acad. Sci. USA by M Tauschek (2002)
  7. Lathem, W.W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45, 277–288 (2002). (10.1046/j.1365-2958.2002.02997.x) / Mol. Microbiol. by WW Lathem (2002)
  8. Reichow, S.L., Korotkov, K.V., Hol, W.G. & Gonen, T. Structure of the cholera toxin secretion channel in its closed state. Nat. Struct. Mol. Biol. 17, 1226–1232 (2010). (10.1038/nsmb.1910) / Nat. Struct. Mol. Biol. by SL Reichow (2010)
  9. Korotkov, K.V., Gonen, T. & Hol, W.G. Secretins: dynamic channels for protein transport across membranes. Trends Biochem. Sci. 36, 433–443 (2011). (10.1016/j.tibs.2011.04.002) / Trends Biochem. Sci. by KV Korotkov (2011)
  10. Koster, M. et al. The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol. 26, 789–797 (1997). (10.1046/j.1365-2958.1997.6141981.x) / Mol. Microbiol. by M Koster (1997)
  11. Collins, R.F., Davidsen, L., Derrick, J.P., Ford, R.C. & Tønjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001). (10.1128/JB.183.13.3825-3832.2001) / J. Bacteriol. by RF Collins (2001)
  12. Linderoth, N.A., Model, P. & Russel, M. Essential role of a sodium dodecyl sulfate-resistant protein IV multimer in assembly-export of filamentous phage. J. Bacteriol. 178, 1962–1970 (1996). (10.1128/jb.178.7.1962-1970.1996) / J. Bacteriol. by NA Linderoth (1996)
  13. Korotkov, K.V., Delarosa, J.R. & Hol, W.G. A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. J. Struct. Biol. 183, 354–362 (2013). (10.1016/j.jsb.2013.06.013) / J. Struct. Biol. by KV Korotkov (2013)
  14. Korotkov, K.V., Pardon, E., Steyaert, J. & Hol, W.G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009). (10.1016/j.str.2008.11.011) / Structure by KV Korotkov (2009)
  15. Van der Meeren, R. et al. New insights into the assembly of bacterial secretins: structural studies of the periplasmic domain of XcpQ from Pseudomonas aeruginosa. J. Biol. Chem. 288, 1214–1225 (2013). (10.1074/jbc.M112.432096) / J. Biol. Chem. by R Van der Meeren (2013)
  16. Tosi, T. et al. Structural similarity of secretins from type II and type III secretion systems. Structure 22, 1348–1355 (2014). (10.1016/j.str.2014.07.005) / Structure by T Tosi (2014)
  17. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006). (10.1093/bioinformatics/bti770) / Bioinformatics by K Arnold (2006)
  18. Korotkov, K.V. et al. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog. 7, e1002228 (2011). (10.1371/journal.ppat.1002228) / PLoS Pathog. by KV Korotkov (2011)
  19. Pineau, C. et al. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol. Microbiol. 94, 126–140 (2014). (10.1111/mmi.12744) / Mol. Microbiol. by C Pineau (2014)
  20. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000). (10.1038/35016007) / Nature by V Koronakis (2000)
  21. Bakelar, J., Buchanan, S.K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016). (10.1126/science.aad3460) / Science by J Bakelar (2016)
  22. Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009). (10.1038/nature08588) / Nature by V Chandran (2009)
  23. Gu, S., Rehman, S., Wang, X., Shevchik, V.E. & Pickersgill, R.W. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. PLoS Pathog. 8, e1002531 (2012). (10.1371/journal.ppat.1002531) / PLoS Pathog. by S Gu (2012)
  24. Nickerson, N.N. et al. Outer membrane targeting of secretin PulD protein relies on disordered domain recognition by a dedicated chaperone. J. Biol. Chem. 286, 38833–38843 (2011). (10.1074/jbc.M111.279851) / J. Biol. Chem. by NN Nickerson (2011)
  25. Das, D. et al. Crystal structure of a putative quorum sensing-regulated protein (PA3611) from the Pseudomonas-specific DUF4146 family. Proteins 82, 1086–1092 (2014). (10.1002/prot.24455) / Proteins by D Das (2014)
  26. Dunstan, R.A. et al. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS. PLoS Pathog. 9, e1003117 (2013). (10.1371/journal.ppat.1003117) / PLoS Pathog. by RA Dunstan (2013)
  27. Whitaker, R. Analysis of gate residues in the type 2 secretin PulD. Master thesis. (Massey University, Manawatu, New Zealand, 2012).
  28. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014). (10.1038/nature13768) / Nature by P Goyal (2014)
  29. Cowan, S.W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992). (10.1038/358727a0) / Nature by SW Cowan (1992)
  30. Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013). (10.1038/nature12521) / Nature by N Noinaj (2013)
  31. Marlovits, T.C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004). (10.1126/science.1102610) / Science by TC Marlovits (2004)
  32. Berry, J.L. et al. Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog. 8, e1002923 (2012). (10.1371/journal.ppat.1002923) / PLoS Pathog. by JL Berry (2012)
  33. Bai, X.C. et al. An atomic structure of human γ-secretase. Nature 525, 212–217 (2015). (10.1038/nature14892) / Nature by XC Bai (2015)
  34. Scheich, C., Kümmel, D., Soumailakakis, D., Heinemann, U. & Büssow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007). (10.1093/nar/gkm067) / Nucleic Acids Res. by C Scheich (2007)
  35. Li, X., Zheng, S., Agard, D.A. & Cheng, Y. Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryo-EM images by UCSFImage. J. Struct. Biol. 192, 174–178 (2015). (10.1016/j.jsb.2015.09.003) / J. Struct. Biol. by X Li (2015)
  36. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013). (10.1038/nmeth.2472) / Nat. Methods by X Li (2013)
  37. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  38. Scheres, S.H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015). (10.1016/j.jsb.2014.11.010) / J. Struct. Biol. by SH Scheres (2015)
  39. Scheres, S.H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014). (10.7554/eLife.03665) / eLife by SH Scheres (2014)
  40. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). (10.1016/j.jsb.2012.09.006) / J. Struct. Biol. by SH Scheres (2012)
  41. Scheres, S.H. Classification of structural heterogeneity by maximum-likelihood methods. Methods Enzymol. 482, 295–320 (2010). (10.1016/S0076-6879(10)82012-9) / Methods Enzymol. by SH Scheres (2010)
  42. Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014). (10.1038/nmeth.2727) / Nat. Methods by A Kucukelbir (2014)
  43. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008). (10.1038/nprot.2008.156) / Nat. Protoc. by TR Shaikh (2008)
  44. Rosenthal, P.B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003). (10.1016/j.jmb.2003.07.013) / J. Mol. Biol. by PB Rosenthal (2003)
  45. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011). (10.1107/S0907444910045749) / Acta Crystallogr. D Biol. Crystallogr. by MD Winn (2011)
  46. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). (10.1107/S0907444910007493) / Acta Crystallogr. D Biol. Crystallogr. by P Emsley (2010)
  47. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). (10.1107/S0907444909052925) / Acta Crystallogr. D Biol. Crystallogr. by PD Adams (2010)
  48. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (10.1002/jcc.20084) / J. Comput. Chem. by EF Pettersen (2004)
  49. Li, N. et al. Structure of the eukaryotic MCM complex at 3.8 Å. Nature 524, 186–191 (2015). (10.1038/nature14685) / Nature by N Li (2015)
  50. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). (10.1107/S0907444909042073) / Acta Crystallogr. D Biol. Crystallogr. by VB Chen (2010)
  51. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). (10.1093/bioinformatics/btm404) / Bioinformatics by MA Larkin (2007)
  52. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003). (10.1093/nar/gkg556) / Nucleic Acids Res. by P Gouet (2003)
  53. The PyMOL Molecular Graphics System v.1.8. (Schrödinger, LLC, 2015).
Dates
Type When
Created 8 years, 7 months ago (Jan. 9, 2017, 10:59 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:41 a.m.)
Indexed 1 month, 1 week ago (July 26, 2025, 5:11 a.m.)
Issued 8 years, 7 months ago (Jan. 9, 2017)
Published 8 years, 7 months ago (Jan. 9, 2017)
Published Online 8 years, 7 months ago (Jan. 9, 2017)
Published Print 8 years, 7 months ago (Feb. 1, 2017)
Funders 0

None

@article{Yan_2017, title={Structural insights into the secretin translocation channel in the type II secretion system}, volume={24}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.3350}, DOI={10.1038/nsmb.3350}, number={2}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Yan, Zhaofeng and Yin, Meng and Xu, Dandan and Zhu, Yongqun and Li, Xueming}, year={2017}, month=jan, pages={177–183} }