Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Schreieck, A., Easter, A. D., Etzold, S., Wiederhold, K., Lidschreiber, M., Cramer, P., & Passmore, L. A. (2014). RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nature Structural & Molecular Biology, 21(2), 175–179.

Authors 7
  1. Amelie Schreieck (first)
  2. Ashley D Easter (additional)
  3. Stefanie Etzold (additional)
  4. Katrin Wiederhold (additional)
  5. Michael Lidschreiber (additional)
  6. Patrick Cramer (additional)
  7. Lori A Passmore (additional)
References 48 Referenced 88
  1. Brannan, K. & Bentley, D.L. Control of transcriptional elongation by RNA Polymerase II: a retrospective. Genet. Res. Int. 2012, 170–173 (2012). / Genet. Res. Int. by K Brannan (2012)
  2. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009). (10.1016/j.molcel.2009.10.019) / Mol. Cell by S Buratowski (2009)
  3. Corden, J.L. Transcription: seven ups the code. Science 318, 1735–1736 (2007). (10.1126/science.1152624) / Science by JL Corden (2007)
  4. Jeronimo, C., Bataille, A.R. & Robert, F. The writers, readers, and functions of the RNA Polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522 (2013). (10.1021/cr4001397) / Chem. Rev. by C Jeronimo (2013)
  5. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000). (10.1101/gad.824700) / Genes Dev. by P Komarnitsky (2000)
  6. Schroeder, S.C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000). (10.1101/gad.836300) / Genes Dev. by SC Schroeder (2000)
  7. Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004). (10.1016/S1097-2765(03)00492-1) / Mol. Cell by SH Ahn (2004)
  8. Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012). (10.1126/science.1219651) / Science by A Mayer (2012)
  9. Niño, C.A., Hérissant, L., Babour, A. & Dargemont, C. mRNA nuclear export in yeast. Chem. Rev. 113, 8523–8545 (2013). (10.1021/cr400002g) / Chem. Rev. by CA Niño (2013)
  10. Garneau, N.L., Wilusz, J. & Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007). (10.1038/nrm2104) / Nat. Rev. Mol. Cell Biol. by NL Garneau (2007)
  11. Kapp, L.D. & Lorsch, J.R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657–704 (2004). (10.1146/annurev.biochem.73.030403.080419) / Annu. Rev. Biochem. by LD Kapp (2004)
  12. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999). (10.1128/MMBR.63.2.405-445.1999) / Microbiol. Mol. Biol. Rev. by J Zhao (1999)
  13. Mandel, C.R., Bai, Y. & Tong, L. Protein factors in pre-mRNA 3′-end processing. Cell Mol. Life Sci. 65, 1099–1122 (2008). (10.1007/s00018-007-7474-3) / Cell Mol. Life Sci. by CR Mandel (2008)
  14. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997). (10.1038/385357a0) / Nature by S McCracken (1997)
  15. Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002). (10.1016/S1097-2765(02)00518-X) / Mol. Cell by DD Licatalosi (2002)
  16. Hirose, Y. & Manley, J.L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96 (1998). (10.1038/25786) / Nature by Y Hirose (1998)
  17. Proudfoot, N.J. Ending the message: poly(a) signals then and now. Genes Dev. 25, 1770–1782 (2011). (10.1101/gad.17268411) / Genes Dev. by NJ Proudfoot (2011)
  18. Birse, C.E., Minvielle-Sebastia, L., Lee, B.A. & Keller, W. Coupling termination of transcription to messenger RNA maturation in yeast. Science 280, 298–301 (1998). (10.1126/science.280.5361.298) / Science by CE Birse (1998)
  19. Barillà, D., Lee, B.A. & Proudfoot, N.J. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98, 445–450 (2001). / Proc. Natl. Acad. Sci. USA by D Barillà (2001)
  20. Sadowski, M., Dichtl, B., Hübner, W. & Keller, W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J. 22, 2167–2177 (2003). (10.1093/emboj/cdg200) / EMBO J. by M Sadowski (2003)
  21. Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430, 223–226 (2004). (10.1038/nature02679) / Nature by A Meinhart (2004)
  22. Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. & Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387–394 (2004). (10.1016/S1097-2765(04)00235-7) / Mol. Cell by S Krishnamurthy (2004)
  23. Meinhart, A., Silberzahn, T. & Cramer, P. The mRNA transcription/processing factor Ssu72 is a potential tyrosine phosphatase. J. Biol. Chem. 278, 15917–15921 (2003). (10.1074/jbc.M301643200) / J. Biol. Chem. by A Meinhart (2003)
  24. Nedea, E. et al. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem. 278, 33000–33010 (2003). (10.1074/jbc.M304454200) / J. Biol. Chem. by E Nedea (2003)
  25. Bataille, A.R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012). (10.1016/j.molcel.2011.11.024) / Mol. Cell by AR Bataille (2012)
  26. Xiang, K. et al. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 467, 729–733 (2010). (10.1038/nature09391) / Nature by K Xiang (2010)
  27. Nedea, E. et al. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol. Cell 29, 577–587 (2008). (10.1016/j.molcel.2007.12.031) / Mol. Cell by E Nedea (2008)
  28. Gilbert, W. & Guthrie, C. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13, 201–212 (2004). (10.1016/S1097-2765(04)00030-9) / Mol. Cell by W Gilbert (2004)
  29. He, X. & Moore, C. Regulation of yeast mRNA 3′ end processing by phosphorylation. Mol. Cell 19, 619–629 (2005). (10.1016/j.molcel.2005.07.016) / Mol. Cell by X He (2005)
  30. Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484 (2009). (10.1016/j.cell.2009.10.006) / Cell by Y Shi (2009)
  31. Chu, Y., Lee, E.Y. & Schlender, K.K. Activation of protein phosphatase 1: formation of a metalloenzyme. J. Biol. Chem. 271, 2574–2577 (1996). (10.1074/jbc.271.5.2574) / J. Biol. Chem. by Y Chu (1996)
  32. Egloff, M.P., Cohen, P.T., Reinemer, P. & Barford, D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol. 254, 942–959 (1995). (10.1006/jmbi.1995.0667) / J. Mol. Biol. by MP Egloff (1995)
  33. Haruki, H., Nishikawa, J. & Laemmli, U.K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008). (10.1016/j.molcel.2008.07.020) / Mol. Cell by H Haruki (2008)
  34. Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010). (10.1038/nsmb.1903) / Nat. Struct. Mol. Biol. by A Mayer (2010)
  35. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001). (10.1101/gad.935901) / Genes Dev. by EJ Cho (2001)
  36. Peti, W., Nairn, A.C. & Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 280, 596–611 (2013). (10.1111/j.1742-4658.2012.08509.x) / FEBS J. by W Peti (2013)
  37. MacKintosh, C. et al. Further evidence that inhibitor-2 acts like a chaperone to fold PP1 into its native conformation. FEBS Lett. 397, 235–238 (1996). (10.1016/S0014-5793(96)01175-1) / FEBS Lett. by C MacKintosh (1996)
  38. Farkas, I., Dombrádi, V., Miskei, M., Szabados, L. & Koncz, C. Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 12, 169–176 (2007). (10.1016/j.tplants.2007.03.003) / Trends Plant Sci. by I Farkas (2007)
  39. Kim, T.-W. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260 (2009). (10.1038/ncb1970) / Nat. Cell Biol. by T-W Kim (2009)
  40. Chao, Y. et al. Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol. Cell 23, 535–546 (2006). (10.1016/j.molcel.2006.07.027) / Mol. Cell by Y Chao (2006)
  41. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004). (10.1038/nature03041) / Nature by M Kim (2004)
  42. Logan, J., Falck-Pedersen, E., Darnell, J.E. & Shenk, T. A poly(a) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse βmaj-globin gene. Proc. Natl. Acad. Sci. USA 84, 8306–8310 (1987). (10.1073/pnas.84.23.8306) / Proc. Natl. Acad. Sci. USA by J Logan (1987)
  43. Mischo, H.E. & Proudfoot, N.J. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim. Biophys. Acta 1829, 174–185 (2013). (10.1016/j.bbagrm.2012.10.003) / Biochim. Biophys. Acta by HE Mischo (2013)
  44. Passmore, L.A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003). (10.1093/emboj/cdg084) / EMBO J. by LA Passmore (2003)
  45. Sydow, J.F. et al. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell 34, 710–721 (2009). (10.1016/j.molcel.2009.06.002) / Mol. Cell by JF Sydow (2009)
  46. Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007). (10.1126/science.1145977) / Science by RD Chapman (2007)
  47. Mayer, A. et al. The spt5 C-terminal region recruits yeast 3′ RNA cleavage factor I. Mol. Cell Biol. 32, 1321–1331 (2012). (10.1128/MCB.06310-11) / Mol. Cell Biol. by A Mayer (2012)
  48. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008). (10.1126/science.1158441) / Science by U Nagalakshmi (2008)
Dates
Type When
Created 11 years, 7 months ago (Jan. 12, 2014, 4:18 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:35 a.m.)
Indexed 2 months, 1 week ago (June 13, 2025, 3:48 a.m.)
Issued 11 years, 7 months ago (Jan. 12, 2014)
Published 11 years, 7 months ago (Jan. 12, 2014)
Published Online 11 years, 7 months ago (Jan. 12, 2014)
Published Print 11 years, 6 months ago (Feb. 1, 2014)
Funders 0

None

@article{Schreieck_2014, title={RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7}, volume={21}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2753}, DOI={10.1038/nsmb.2753}, number={2}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Schreieck, Amelie and Easter, Ashley D and Etzold, Stefanie and Wiederhold, Katrin and Lidschreiber, Michael and Cramer, Patrick and Passmore, Lori A}, year={2014}, month=jan, pages={175–179} }