Crossref
journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Authors
7
- Amelie Schreieck (first)
- Ashley D Easter (additional)
- Stefanie Etzold (additional)
- Katrin Wiederhold (additional)
- Michael Lidschreiber (additional)
- Patrick Cramer (additional)
- Lori A Passmore (additional)
References
48
Referenced
88
- Brannan, K. & Bentley, D.L. Control of transcriptional elongation by RNA Polymerase II: a retrospective. Genet. Res. Int. 2012, 170–173 (2012). / Genet. Res. Int. by K Brannan (2012)
-
Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).
(
10.1016/j.molcel.2009.10.019
) / Mol. Cell by S Buratowski (2009) -
Corden, J.L. Transcription: seven ups the code. Science 318, 1735–1736 (2007).
(
10.1126/science.1152624
) / Science by JL Corden (2007) -
Jeronimo, C., Bataille, A.R. & Robert, F. The writers, readers, and functions of the RNA Polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522 (2013).
(
10.1021/cr4001397
) / Chem. Rev. by C Jeronimo (2013) -
Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).
(
10.1101/gad.824700
) / Genes Dev. by P Komarnitsky (2000) -
Schroeder, S.C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).
(
10.1101/gad.836300
) / Genes Dev. by SC Schroeder (2000) -
Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).
(
10.1016/S1097-2765(03)00492-1
) / Mol. Cell by SH Ahn (2004) -
Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012).
(
10.1126/science.1219651
) / Science by A Mayer (2012) -
Niño, C.A., Hérissant, L., Babour, A. & Dargemont, C. mRNA nuclear export in yeast. Chem. Rev. 113, 8523–8545 (2013).
(
10.1021/cr400002g
) / Chem. Rev. by CA Niño (2013) -
Garneau, N.L., Wilusz, J. & Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).
(
10.1038/nrm2104
) / Nat. Rev. Mol. Cell Biol. by NL Garneau (2007) -
Kapp, L.D. & Lorsch, J.R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657–704 (2004).
(
10.1146/annurev.biochem.73.030403.080419
) / Annu. Rev. Biochem. by LD Kapp (2004) -
Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).
(
10.1128/MMBR.63.2.405-445.1999
) / Microbiol. Mol. Biol. Rev. by J Zhao (1999) -
Mandel, C.R., Bai, Y. & Tong, L. Protein factors in pre-mRNA 3′-end processing. Cell Mol. Life Sci. 65, 1099–1122 (2008).
(
10.1007/s00018-007-7474-3
) / Cell Mol. Life Sci. by CR Mandel (2008) -
McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).
(
10.1038/385357a0
) / Nature by S McCracken (1997) -
Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).
(
10.1016/S1097-2765(02)00518-X
) / Mol. Cell by DD Licatalosi (2002) -
Hirose, Y. & Manley, J.L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96 (1998).
(
10.1038/25786
) / Nature by Y Hirose (1998) -
Proudfoot, N.J. Ending the message: poly(a) signals then and now. Genes Dev. 25, 1770–1782 (2011).
(
10.1101/gad.17268411
) / Genes Dev. by NJ Proudfoot (2011) -
Birse, C.E., Minvielle-Sebastia, L., Lee, B.A. & Keller, W. Coupling termination of transcription to messenger RNA maturation in yeast. Science 280, 298–301 (1998).
(
10.1126/science.280.5361.298
) / Science by CE Birse (1998) - Barillà, D., Lee, B.A. & Proudfoot, N.J. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98, 445–450 (2001). / Proc. Natl. Acad. Sci. USA by D Barillà (2001)
-
Sadowski, M., Dichtl, B., Hübner, W. & Keller, W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J. 22, 2167–2177 (2003).
(
10.1093/emboj/cdg200
) / EMBO J. by M Sadowski (2003) -
Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430, 223–226 (2004).
(
10.1038/nature02679
) / Nature by A Meinhart (2004) -
Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. & Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387–394 (2004).
(
10.1016/S1097-2765(04)00235-7
) / Mol. Cell by S Krishnamurthy (2004) -
Meinhart, A., Silberzahn, T. & Cramer, P. The mRNA transcription/processing factor Ssu72 is a potential tyrosine phosphatase. J. Biol. Chem. 278, 15917–15921 (2003).
(
10.1074/jbc.M301643200
) / J. Biol. Chem. by A Meinhart (2003) -
Nedea, E. et al. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem. 278, 33000–33010 (2003).
(
10.1074/jbc.M304454200
) / J. Biol. Chem. by E Nedea (2003) -
Bataille, A.R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012).
(
10.1016/j.molcel.2011.11.024
) / Mol. Cell by AR Bataille (2012) -
Xiang, K. et al. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 467, 729–733 (2010).
(
10.1038/nature09391
) / Nature by K Xiang (2010) -
Nedea, E. et al. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol. Cell 29, 577–587 (2008).
(
10.1016/j.molcel.2007.12.031
) / Mol. Cell by E Nedea (2008) -
Gilbert, W. & Guthrie, C. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13, 201–212 (2004).
(
10.1016/S1097-2765(04)00030-9
) / Mol. Cell by W Gilbert (2004) -
He, X. & Moore, C. Regulation of yeast mRNA 3′ end processing by phosphorylation. Mol. Cell 19, 619–629 (2005).
(
10.1016/j.molcel.2005.07.016
) / Mol. Cell by X He (2005) -
Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484 (2009).
(
10.1016/j.cell.2009.10.006
) / Cell by Y Shi (2009) -
Chu, Y., Lee, E.Y. & Schlender, K.K. Activation of protein phosphatase 1: formation of a metalloenzyme. J. Biol. Chem. 271, 2574–2577 (1996).
(
10.1074/jbc.271.5.2574
) / J. Biol. Chem. by Y Chu (1996) -
Egloff, M.P., Cohen, P.T., Reinemer, P. & Barford, D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol. 254, 942–959 (1995).
(
10.1006/jmbi.1995.0667
) / J. Mol. Biol. by MP Egloff (1995) -
Haruki, H., Nishikawa, J. & Laemmli, U.K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).
(
10.1016/j.molcel.2008.07.020
) / Mol. Cell by H Haruki (2008) -
Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010).
(
10.1038/nsmb.1903
) / Nat. Struct. Mol. Biol. by A Mayer (2010) -
Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).
(
10.1101/gad.935901
) / Genes Dev. by EJ Cho (2001) -
Peti, W., Nairn, A.C. & Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 280, 596–611 (2013).
(
10.1111/j.1742-4658.2012.08509.x
) / FEBS J. by W Peti (2013) -
MacKintosh, C. et al. Further evidence that inhibitor-2 acts like a chaperone to fold PP1 into its native conformation. FEBS Lett. 397, 235–238 (1996).
(
10.1016/S0014-5793(96)01175-1
) / FEBS Lett. by C MacKintosh (1996) -
Farkas, I., Dombrádi, V., Miskei, M., Szabados, L. & Koncz, C. Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 12, 169–176 (2007).
(
10.1016/j.tplants.2007.03.003
) / Trends Plant Sci. by I Farkas (2007) -
Kim, T.-W. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260 (2009).
(
10.1038/ncb1970
) / Nat. Cell Biol. by T-W Kim (2009) -
Chao, Y. et al. Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol. Cell 23, 535–546 (2006).
(
10.1016/j.molcel.2006.07.027
) / Mol. Cell by Y Chao (2006) -
Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).
(
10.1038/nature03041
) / Nature by M Kim (2004) -
Logan, J., Falck-Pedersen, E., Darnell, J.E. & Shenk, T. A poly(a) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse βmaj-globin gene. Proc. Natl. Acad. Sci. USA 84, 8306–8310 (1987).
(
10.1073/pnas.84.23.8306
) / Proc. Natl. Acad. Sci. USA by J Logan (1987) -
Mischo, H.E. & Proudfoot, N.J. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim. Biophys. Acta 1829, 174–185 (2013).
(
10.1016/j.bbagrm.2012.10.003
) / Biochim. Biophys. Acta by HE Mischo (2013) -
Passmore, L.A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).
(
10.1093/emboj/cdg084
) / EMBO J. by LA Passmore (2003) -
Sydow, J.F. et al. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell 34, 710–721 (2009).
(
10.1016/j.molcel.2009.06.002
) / Mol. Cell by JF Sydow (2009) -
Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).
(
10.1126/science.1145977
) / Science by RD Chapman (2007) -
Mayer, A. et al. The spt5 C-terminal region recruits yeast 3′ RNA cleavage factor I. Mol. Cell Biol. 32, 1321–1331 (2012).
(
10.1128/MCB.06310-11
) / Mol. Cell Biol. by A Mayer (2012) -
Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).
(
10.1126/science.1158441
) / Science by U Nagalakshmi (2008)
Dates
Type | When |
---|---|
Created | 11 years, 7 months ago (Jan. 12, 2014, 4:18 p.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:35 a.m.) |
Indexed | 2 months, 1 week ago (June 13, 2025, 3:48 a.m.) |
Issued | 11 years, 7 months ago (Jan. 12, 2014) |
Published | 11 years, 7 months ago (Jan. 12, 2014) |
Published Online | 11 years, 7 months ago (Jan. 12, 2014) |
Published Print | 11 years, 6 months ago (Feb. 1, 2014) |
@article{Schreieck_2014, title={RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7}, volume={21}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2753}, DOI={10.1038/nsmb.2753}, number={2}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Schreieck, Amelie and Easter, Ashley D and Etzold, Stefanie and Wiederhold, Katrin and Lidschreiber, Michael and Cramer, Patrick and Passmore, Lori A}, year={2014}, month=jan, pages={175–179} }