Crossref
journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
References
64
Referenced
64
-
Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476–1483 (1992).
(
10.1128/JVI.66.3.1476-1483.1992
) / J. Virol. by K Tsukiyama-Kohara (1992) -
Bukh, J., Purcell, R.H. & Miller, R.H. Sequence analysis of the 5′ noncoding region of hepatitis C virus. Proc. Natl. Acad. Sci. USA 89, 4942–4946 (1992).
(
10.1073/pnas.89.11.4942
) / Proc. Natl. Acad. Sci. USA by J Bukh (1992) -
Simmonds, P. et al. Sequence variability in the 5′ non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diversity. J. Gen. Virol. 74, 661–668 (1993).
(
10.1099/0022-1317-74-4-661
) / J. Gen. Virol. by P Simmonds (1993) -
Fraser, C.S. & Doudna, J.A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat. Rev. Microbiol. 5, 29–38 (2007).
(
10.1038/nrmicro1558
) / Nat. Rev. Microbiol. by CS Fraser (2007) -
Jackson, R.J., Hellen, C.U. & Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).
(
10.1038/nrm2838
) / Nat. Rev. Mol. Cell Biol. by RJ Jackson (2010) -
Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).
(
10.1017/S1355838201001790
) / RNA by JS Kieft (2001) -
Kolupaeva, V.G., Pestova, T.V. & Hellen, C.U. An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J. Virol. 74, 6242–6250 (2000).
(
10.1128/JVI.74.14.6242-6250.2000
) / J. Virol. by VG Kolupaeva (2000) -
Lytle, J.R., Wu, L. & Robertson, H.D. The ribosome binding site of hepatitis C virus mRNA. J. Virol. 75, 7629–7636 (2001).
(
10.1128/JVI.75.16.7629-7636.2001
) / J. Virol. by JR Lytle (2001) -
Lytle, J.R., Wu, L. & Robertson, H.D. Domains on the hepatitis C virus internal ribosome entry site for 40s subunit binding. RNA 8, 1045–1055 (2002).
(
10.1017/S1355838202029965
) / RNA by JR Lytle (2002) -
Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).
(
10.1101/gad.12.1.67
) / Genes Dev. by TV Pestova (1998) -
Otto, G.A. & Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).
(
10.1016/j.cell.2004.09.038
) / Cell by GA Otto (2004) -
Ji, H., Fraser, C.S., Yu, Y., Leary, J. & Doudna, J.A. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc. Natl. Acad. Sci. USA 101, 16990–16995 (2004).
(
10.1073/pnas.0407402101
) / Proc. Natl. Acad. Sci. USA by H Ji (2004) -
Fraser, C.S., Hershey, J.W. & Doudna, J.A. The pathway of hepatitis C virus mRNA recruitment to the human ribosome. Nat. Struct. Mol. Biol. 16, 397–404 (2009).
(
10.1038/nsmb.1572
) / Nat. Struct. Mol. Biol. by CS Fraser (2009) -
Locker, N., Easton, L.E. & Lukavsky, P.J. HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J. 26, 795–805 (2007).
(
10.1038/sj.emboj.7601549
) / EMBO J. by N Locker (2007) -
Terenin, I.M., Dmitriev, S.E., Andreev, D.E. & Shatsky, I.N. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat. Struct. Mol. Biol. 15, 836–841 (2008).
(
10.1038/nsmb.1445
) / Nat. Struct. Mol. Biol. by IM Terenin (2008) -
Kim, J.H., Park, S.M., Park, J.H., Keum, S.J. & Jang, S.K. eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO J. 30, 2454–2464 (2011).
(
10.1038/emboj.2011.146
) / EMBO J. by JH Kim (2011) -
Kieft, J.S. et al. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J. Mol. Biol. 292, 513–529 (1999).
(
10.1006/jmbi.1999.3095
) / J. Mol. Biol. by JS Kieft (1999) -
Lukavsky, P.J. Structure and function of HCV IRES domains. Virus Res. 139, 166–171 (2009).
(
10.1016/j.virusres.2008.06.004
) / Virus Res. by PJ Lukavsky (2009) -
Sizova, D.V., Kolupaeva, V.G., Pestova, T.V., Shatsky, I.N. & Hellen, C.U. Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J. Virol. 72, 4775–4782 (1998).
(
10.1128/JVI.72.6.4775-4782.1998
) / J. Virol. by DV Sizova (1998) - Honda, M., Brown, E.A. & Lemon, S.M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968 (1996). / RNA by M Honda (1996)
-
Berry, K.E., Waghray, S. & Doudna, J.A. The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. RNA 16, 1559–1569 (2010).
(
10.1261/rna.2197210
) / RNA by KE Berry (2010) -
Filbin, M.E. & Kieft, J.S. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove. RNA 17, 1258–1273 (2011).
(
10.1261/rna.2594011
) / RNA by ME Filbin (2011) -
Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959–1962 (2001).
(
10.1126/science.1058409
) / Science by CM Spahn (2001) -
Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J.D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005).
(
10.1016/j.str.2005.08.008
) / Structure by D Boehringer (2005) -
Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824–20826 (2001).
(
10.1074/jbc.C100206200
) / J. Biol. Chem. by S Fukushi (2001) -
Wower, J., Scheffer, P., Sylvers, L.A., Wintermeyer, W. & Zimmermann, R.A. Topography of the E site on the Escherichia coli ribosome. EMBO J. 12, 617–623 (1993).
(
10.1002/j.1460-2075.1993.tb05694.x
) / EMBO J. by J Wower (1993) -
Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5-Å resolution. Science 292, 883–896 (2001).
(
10.1126/science.1060089
) / Science by MM Yusupov (2001) -
Döring, T., Mitchell, P., Osswald, M., Bochkariov, D. & Brimacombe, R. The decoding region of 16S RNA; a cross-linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J. 13, 2677–2685 (1994).
(
10.1002/j.1460-2075.1994.tb06558.x
) / EMBO J. by T Döring (1994) -
Odreman-Macchioli, F., Baralle, F.E. & Buratti, E. Mutational analysis of the different bulge regions of hepatitis C virus domain II and their influence on internal ribosome entry site translational ability. J. Biol. Chem. 276, 41648–41655 (2001).
(
10.1074/jbc.M104128200
) / J. Biol. Chem. by F Odreman-Macchioli (2001) -
Kalliampakou, K.I., Psaridi-Linardaki, L. & Mavromara, P. Mutational analysis of the apical region of domain II of the HCV IRES. FEBS Lett. 511, 79–84 (2002).
(
10.1016/S0014-5793(01)03300-2
) / FEBS Lett. by KI Kalliampakou (2002) -
Passmore, L.A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26, 41–50 (2007).
(
10.1016/j.molcel.2007.03.018
) / Mol. Cell by LA Passmore (2007) -
Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).
(
10.1126/science.1198308
) / Science by J Rabl (2011) -
Lukavsky, P.J., Kim, I., Otto, G.A. & Puglisi, J.D. Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10, 1033–1038 (2003).
(
10.1038/nsb1004
) / Nat. Struct. Biol. by PJ Lukavsky (2003) -
Pestova, T.V., Hellen, C.U. & Shatsky, I.N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell Biol. 16, 6859–6869 (1996).
(
10.1128/MCB.16.12.6859
) / Mol. Cell Biol. by TV Pestova (1996) -
Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).
(
10.1016/S0092-8674(00)00055-6
) / Cell by JE Wilson (2000) -
Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988).
(
10.1016/S0076-6879(88)64058-4
) / Methods Enzymol. by D Hartz (1988) -
Devaraj, A., Shoji, S., Holbrook, E.D. & Fredrick, K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15, 255–265 (2009).
(
10.1261/rna.1320109
) / RNA by A Devaraj (2009) -
Monro, R.E. & Marcker, K.A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347–350 (1967).
(
10.1016/0022-2836(67)90146-5
) / J. Mol. Biol. by RE Monro (1967) -
Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).
(
10.1016/j.jmb.2004.08.097
) / J. Mol. Biol. by F Peske (2004) -
Dibrov, S.M. et al. Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc. Natl. Acad. Sci. USA 109, 5223–5228 (2012).
(
10.1073/pnas.1118699109
) / Proc. Natl. Acad. Sci. USA by SM Dibrov (2012) -
Robert, F. & Brakier-Gingras, L. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome. J. Biol. Chem. 278, 44913–44920 (2003).
(
10.1074/jbc.M306534200
) / J. Biol. Chem. by F Robert (2003) -
Galkin, O. et al. Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5. RNA 13, 2116–2128 (2007).
(
10.1261/rna.688207
) / RNA by O Galkin (2007) -
Geigenmüller, U. & Nierhaus, K.H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9, 4527–4533 (1990).
(
10.1002/j.1460-2075.1990.tb07904.x
) / EMBO J. by U Geigenmüller (1990) -
Petropoulos, A.D. & Green, R. Further in vitro exploration fails to support the allosteric three-site model. J. Biol. Chem. 287, 11642–11648 (2012).
(
10.1074/jbc.C111.330068
) / J. Biol. Chem. by AD Petropoulos (2012) -
Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).
(
10.1038/nature08925
) / Nature by S Uemura (2010) -
Chen, C. et al. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc. Natl. Acad. Sci. USA 108, 16980–16985 (2011).
(
10.1073/pnas.1106999108
) / Proc. Natl. Acad. Sci. USA by C Chen (2011) -
Malygin, A.A., Yanshina, D.D. & Karpova, G.G. Interactions of human ribosomal proteins S16 and S5 with an 18S rRNA fragment containing their binding sites. Biochimie 91, 1180–1186 (2009).
(
10.1016/j.biochi.2009.06.013
) / Biochimie by AA Malygin (2009) - Ian'shina, D.D., Malygin, A.A. & Karpova, G.G. Binding of human ribosomal protein S5 with the 18S rRNA fragment 1203–1236/1521–1698 [in Russian]. Mol. Biol. (Mosk.) 40, 460–467 (2006). / Mol. Biol. (Mosk.) by DD Ian'shina (2006)
-
Yu, Y. et al. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. 37, 5167–5182 (2009).
(
10.1093/nar/gkp519
) / Nucleic Acids Res. by Y Yu (2009) -
Antúnez de Mayolo, P. & Woolford, J.L. Jr. Interactions of yeast ribosomal protein rpS14 with RNA. J. Mol. Biol. 333, 697–709 (2003).
(
10.1016/j.jmb.2003.09.006
) / J. Mol. Biol. by P Antúnez de Mayolo (2003) -
Lomakin, I.B., Kolupaeva, V.G., Marintchev, A., Wagner, G. & Pestova, T.V. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. 17, 2786–2797 (2003).
(
10.1101/gad.1141803
) / Genes Dev. by IB Lomakin (2003) -
Acker, M.G. et al. Kinetic analysis of late steps of eukaryotic translation initiation. J. Mol. Biol. 385, 491–506 (2009).
(
10.1016/j.jmb.2008.10.029
) / J. Mol. Biol. by MG Acker (2009) -
Fringer, J.M., Acker, M.G., Fekete, C.A., Lorsch, J.R. & Dever, T.E. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol. Cell. Biol. 27, 2384–2397 (2007).
(
10.1128/MCB.02254-06
) / Mol. Cell. Biol. by JM Fringer (2007) -
van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
(
10.1006/jsbi.1996.0004
) / J. Struct. Biol. by M van Heel (1996) -
Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).
(
10.1126/science.1131127
) / Science by M Selmer (2006) -
Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0-Å resolution. Science 334, 1524–1529 (2011).
(
10.1126/science.1212642
) / Science by A Ben-Shem (2011) -
Stoneley, M., Paulin, F.E., Le Quesne, J.P., Chappell, S.A. & Willis, A.E. C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16, 423–428 (1998).
(
10.1038/sj.onc.1201763
) / Oncogene by M Stoneley (1998) -
Keel, A.Y., Easton, L.E., Lukavsky, P.J. & Kieft, J.S. Large-scale native preparation of in vitro transcribed RNA. Methods Enzymol. 469, 3–25 (2009).
(
10.1016/S0076-6879(09)69001-7
) / Methods Enzymol. by AY Keel (2009) -
Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol. Proced. Online 6, 23–34 (2004).
(
10.1251/bpo70
) / Biol. Proced. Online by M Ohi (2004) -
Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
(
10.1016/S1047-8477(03)00069-8
) / J. Struct. Biol. by JA Mindell (2003) -
Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).
(
10.1016/j.jsb.2006.05.004
) / J. Struct. Biol. by N Grigorieff (2007) -
Sousa, D. & Grigorieff, N. Ab initio resolution measurement for single particle structures. J. Struct. Biol. 157, 201–210 (2007).
(
10.1016/j.jsb.2006.08.003
) / J. Struct. Biol. by D Sousa (2007) -
Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 52, 826–828 (1996).
(
10.1107/S0907444995014983
) / Acta Crystallogr. D Biol. Crystallogr. by GJ Kleywegt (1996) -
Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
(
10.1002/jcc.20084
) / J. Comput. Chem. by EF Pettersen (2004)
Dates
Type | When |
---|---|
Created | 12 years, 8 months ago (Dec. 21, 2012, 5:57 a.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:33 a.m.) |
Indexed | 1 month, 3 weeks ago (June 25, 2025, 2:41 p.m.) |
Issued | 12 years, 7 months ago (Dec. 23, 2012) |
Published | 12 years, 7 months ago (Dec. 23, 2012) |
Published Online | 12 years, 7 months ago (Dec. 23, 2012) |
Published Print | 12 years, 6 months ago (Feb. 1, 2013) |
@article{Filbin_2012, title={HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation}, volume={20}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2465}, DOI={10.1038/nsmb.2465}, number={2}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Filbin, Megan E and Vollmar, Breanna S and Shi, Dan and Gonen, Tamir and Kieft, Jeffrey S}, year={2012}, month=dec, pages={150–158} }