Crossref
journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
References
45
Referenced
159
-
Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).
(
10.1038/nature10317
) / Nature by FU Hartl (2011) -
Doyle, S.M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009).
(
10.1016/j.tibs.2008.09.010
) / Trends Biochem. Sci. by SM Doyle (2009) -
Liberek, K., Lewandowska, A. & Zietkiewicz, S. Chaperones in control of protein disaggregation. EMBO J. 27, 328–335 (2008).
(
10.1038/sj.emboj.7601970
) / EMBO J. by K Liberek (2008) -
Sanchez, Y. & Lindquist, S.L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).
(
10.1126/science.2188365
) / Science by Y Sanchez (1990) -
Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991).
(
10.1128/jb.173.14.4254-4262.1991
) / J. Bacteriol. by CL Squires (1991) -
Queitsch, C., Hong, S.W., Vierling, E. & Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492 (2000).
(
10.1105/tpc.12.4.479
) / Plant Cell by C Queitsch (2000) -
Hong, S.W. & Vierling, E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 97, 4392–4397 (2000).
(
10.1073/pnas.97.8.4392
) / Proc. Natl. Acad. Sci. USA by SW Hong (2000) -
Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).
(
10.1038/372475a0
) / Nature by DA Parsell (1994) -
Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).
(
10.1016/S0092-8674(00)81223-4
) / Cell by JR Glover (1998) -
Goloubinoff, P., Mogk, A., Peres Ben Zvi, A., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).
(
10.1073/pnas.96.24.13732
) / Proc. Natl. Acad. Sci. USA by P Goloubinoff (1999) -
Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274, 28083–28086 (1999).
(
10.1074/jbc.274.40.28083
) / J. Biol. Chem. by M Zolkiewski (1999) -
Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184–7189 (1999).
(
10.1073/pnas.96.13.7184
) / Proc. Natl. Acad. Sci. USA by K Motohashi (1999) -
Krzewska, J., Langer, T. & Liberek, K. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett. 489, 92–96 (2001).
(
10.1016/S0014-5793(00)02423-6
) / FEBS Lett. by J Krzewska (2001) -
Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).
(
10.1016/j.cell.2004.11.027
) / Cell by J Weibezahn (2004) -
Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279, 44376–44383 (2004).
(
10.1074/jbc.M402405200
) / J. Biol. Chem. by S Zietkiewicz (2004) -
Winkler, J., Tyedmers, J., Bukau, B. & Mogk, A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J. Cell Biol. 198, 387–404 (2012).
(
10.1083/jcb.201201074
) / J. Cell Biol. by J Winkler (2012) -
Acebrón, S.P., Martin, I., del Castillo, U., Moro, F. & Muga, A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 583, 2991–2996 (2009).
(
10.1016/j.febslet.2009.08.020
) / FEBS Lett. by SP Acebrón (2009) -
Lum, R., Tkach, J.M., Vierling, E. & Glover, J.R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).
(
10.1074/jbc.M403777200
) / J. Biol. Chem. by R Lum (2004) -
Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).
(
10.1038/nsmb787
) / Nat. Struct. Mol. Biol. by C Schlieker (2004) -
Lee, S. et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).
(
10.1016/S0092-8674(03)00807-9
) / Cell by S Lee (2003) -
Mogk, A. et al. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP-hydrolysis and chaperone activity. J. Biol. Chem. 278, 17615–17624 (2003).
(
10.1074/jbc.M209686200
) / J. Biol. Chem. by A Mogk (2003) -
Kedzierska, S., Akoev, V., Barnett, M.E. & Zolkiewski, M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 42, 14242–14248 (2003).
(
10.1021/bi035573d
) / Biochemistry by S Kedzierska (2003) -
Haslberger, T. et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25, 247–260 (2007).
(
10.1016/j.molcel.2006.11.008
) / Mol. Cell by T Haslberger (2007) -
Schirmer, E.C., Homann, O.R., Kowal, A.S. & Lindquist, S. Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region. Mol. Biol. Cell 15, 2061–2072 (2004).
(
10.1091/mbc.e02-08-0502
) / Mol. Biol. Cell by EC Schirmer (2004) -
Miot, M. et al. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc. Natl. Acad. Sci. USA 108, 6915–6920 (2011).
(
10.1073/pnas.1102828108
) / Proc. Natl. Acad. Sci. USA by M Miot (2011) -
Sielaff, B. & Tsai, F.T. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J. Mol. Biol. 402, 30–37 (2010).
(
10.1016/j.jmb.2010.07.030
) / J. Mol. Biol. by B Sielaff (2010) -
Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H. & Mogk, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28, 315–325 (2009).
(
10.1038/emboj.2008.269
) / EMBO J. by G Bönemann (2009) -
Pietrosiuk, A. et al. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J. Biol. Chem. 30010–30021 (2011).
(
10.1074/jbc.M111.253377
) -
Oguchi, Y. et al. A tightly regulated molecular toggle controls AAA+ disaggregase. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.2441 (18 November 2012).
(
10.1038/nsmb.2441
) -
Franzmann, T.M., Czekalla, A. & Walter, S.G. Regulatory circuits of the AAA+ disaggregase Hsp104. J. Biol. Chem. 286, 17992–18001 (2011).
(
10.1074/jbc.M110.216176
) / J. Biol. Chem. by TM Franzmann (2011) -
Haslberger, T. et al. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nat. Struct. Mol. Biol. 15, 641–650 (2008).
(
10.1038/nsmb.1425
) / Nat. Struct. Mol. Biol. by T Haslberger (2008) -
Werbeck, N.D., Schlee, S. & Reinstein, J. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J. Mol. Biol. 378, 178–190 (2008).
(
10.1016/j.jmb.2008.02.026
) / J. Mol. Biol. by ND Werbeck (2008) -
del Castillo, U., Fernandez-Higuero, J.A., Perez-Acebron, S., Moro, F. & Muga, A. Nucleotide utilization requirements that render ClpB active as a chaperone. FEBS Lett. 584, 929–934 (2010).
(
10.1016/j.febslet.2010.01.029
) / FEBS Lett. by U del Castillo (2010) -
Hoskins, J.R., Doyle, S.M. & Wickner, S. Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Proc. Natl. Acad. Sci. USA 22233–22238 (2009).
(
10.1073/pnas.0911937106
) -
Laufen, T. et al. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96, 5452–5457 (1999).
(
10.1073/pnas.96.10.5452
) / Proc. Natl. Acad. Sci. USA by T Laufen (1999) -
Winkler, J. et al. Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J. 29, 910–923 (2010).
(
10.1038/emboj.2009.412
) / EMBO J. by J Winkler (2010) -
Kumar, M. & Sourjik, V. Physical map and dynamics of the chaperone network in Escherichia coli. Mol. Microbiol. 84, 736–747 (2012).
(
10.1111/j.1365-2958.2012.08054.x
) / Mol. Microbiol. by M Kumar (2012) -
Lee, S., Sielaff, B., Lee, J. & Tsai, F.T. CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc. Natl. Acad. Sci. USA 107, 8135–8140 (2010).
(
10.1073/pnas.1003572107
) / Proc. Natl. Acad. Sci. USA by S Lee (2010) -
Sharma, S.K., De los Rios, P., Christen, P., Lustig, A. & Goloubinoff, P. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat. Chem. Biol. 6, 914–920 (2010).
(
10.1038/nchembio.455
) / Nat. Chem. Biol. by SK Sharma (2010) -
Konieczny, I. & Liberek, K. Cooperative action of Escherichia coli ClpB protein and DnaK chaperone in the activation of a replication initiation protein. J. Biol. Chem. 277, 18483–18488 (2002).
(
10.1074/jbc.M107580200
) / J. Biol. Chem. by I Konieczny (2002) -
Doyle, S.M., Hoskins, J.R. & Wickner, S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl. Acad. Sci. USA 104, 11138–11144 (2007).
(
10.1073/pnas.0703980104
) / Proc. Natl. Acad. Sci. USA by SM Doyle (2007) -
Tessarz, P., Mogk, A. & Bukau, B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol. Microbiol. 68, 87–97 (2008).
(
10.1111/j.1365-2958.2008.06135.x
) / Mol. Microbiol. by P Tessarz (2008) -
Andréasson, C., Fiaux, J., Rampelt, H., Druffel-Augustin, S. & Bukau, B. Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. USA 105, 16519–16524 (2008).
(
10.1073/pnas.0804187105
) / Proc. Natl. Acad. Sci. USA by C Andréasson (2008) -
Block, S.M., Segall, J.E. & Berg, H.C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323 (1983).
(
10.1128/JB.154.1.312-323.1983
) / J. Bacteriol. by SM Block (1983) -
Kentner, D. & Sourjik, V. Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Mol. Syst. Biol. 5, 238 (2009).
(
10.1038/msb.2008.77
) / Mol. Syst. Biol. by D Kentner (2009)
Dates
Type | When |
---|---|
Created | 12 years, 9 months ago (Nov. 18, 2012, 3:54 p.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:33 a.m.) |
Indexed | 21 hours, 48 minutes ago (Aug. 31, 2025, 6:27 a.m.) |
Issued | 12 years, 9 months ago (Nov. 18, 2012) |
Published | 12 years, 9 months ago (Nov. 18, 2012) |
Published Online | 12 years, 9 months ago (Nov. 18, 2012) |
Published Print | 12 years, 9 months ago (Dec. 1, 2012) |
@article{Seyffer_2012, title={Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces}, volume={19}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2442}, DOI={10.1038/nsmb.2442}, number={12}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Seyffer, Fabian and Kummer, Eva and Oguchi, Yuki and Winkler, Juliane and Kumar, Mohit and Zahn, Regina and Sourjik, Victor and Bukau, Bernd and Mogk, Axel}, year={2012}, month=nov, pages={1347–1355} }