Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Seyffer, F., Kummer, E., Oguchi, Y., Winkler, J., Kumar, M., Zahn, R., Sourjik, V., Bukau, B., & Mogk, A. (2012). Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nature Structural & Molecular Biology, 19(12), 1347–1355.

Authors 9
  1. Fabian Seyffer (first)
  2. Eva Kummer (additional)
  3. Yuki Oguchi (additional)
  4. Juliane Winkler (additional)
  5. Mohit Kumar (additional)
  6. Regina Zahn (additional)
  7. Victor Sourjik (additional)
  8. Bernd Bukau (additional)
  9. Axel Mogk (additional)
References 45 Referenced 159
  1. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011). (10.1038/nature10317) / Nature by FU Hartl (2011)
  2. Doyle, S.M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009). (10.1016/j.tibs.2008.09.010) / Trends Biochem. Sci. by SM Doyle (2009)
  3. Liberek, K., Lewandowska, A. & Zietkiewicz, S. Chaperones in control of protein disaggregation. EMBO J. 27, 328–335 (2008). (10.1038/sj.emboj.7601970) / EMBO J. by K Liberek (2008)
  4. Sanchez, Y. & Lindquist, S.L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990). (10.1126/science.2188365) / Science by Y Sanchez (1990)
  5. Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991). (10.1128/jb.173.14.4254-4262.1991) / J. Bacteriol. by CL Squires (1991)
  6. Queitsch, C., Hong, S.W., Vierling, E. & Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492 (2000). (10.1105/tpc.12.4.479) / Plant Cell by C Queitsch (2000)
  7. Hong, S.W. & Vierling, E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 97, 4392–4397 (2000). (10.1073/pnas.97.8.4392) / Proc. Natl. Acad. Sci. USA by SW Hong (2000)
  8. Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994). (10.1038/372475a0) / Nature by DA Parsell (1994)
  9. Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998). (10.1016/S0092-8674(00)81223-4) / Cell by JR Glover (1998)
  10. Goloubinoff, P., Mogk, A., Peres Ben Zvi, A., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999). (10.1073/pnas.96.24.13732) / Proc. Natl. Acad. Sci. USA by P Goloubinoff (1999)
  11. Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274, 28083–28086 (1999). (10.1074/jbc.274.40.28083) / J. Biol. Chem. by M Zolkiewski (1999)
  12. Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184–7189 (1999). (10.1073/pnas.96.13.7184) / Proc. Natl. Acad. Sci. USA by K Motohashi (1999)
  13. Krzewska, J., Langer, T. & Liberek, K. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett. 489, 92–96 (2001). (10.1016/S0014-5793(00)02423-6) / FEBS Lett. by J Krzewska (2001)
  14. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004). (10.1016/j.cell.2004.11.027) / Cell by J Weibezahn (2004)
  15. Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279, 44376–44383 (2004). (10.1074/jbc.M402405200) / J. Biol. Chem. by S Zietkiewicz (2004)
  16. Winkler, J., Tyedmers, J., Bukau, B. & Mogk, A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J. Cell Biol. 198, 387–404 (2012). (10.1083/jcb.201201074) / J. Cell Biol. by J Winkler (2012)
  17. Acebrón, S.P., Martin, I., del Castillo, U., Moro, F. & Muga, A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 583, 2991–2996 (2009). (10.1016/j.febslet.2009.08.020) / FEBS Lett. by SP Acebrón (2009)
  18. Lum, R., Tkach, J.M., Vierling, E. & Glover, J.R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004). (10.1074/jbc.M403777200) / J. Biol. Chem. by R Lum (2004)
  19. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004). (10.1038/nsmb787) / Nat. Struct. Mol. Biol. by C Schlieker (2004)
  20. Lee, S. et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003). (10.1016/S0092-8674(03)00807-9) / Cell by S Lee (2003)
  21. Mogk, A. et al. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP-hydrolysis and chaperone activity. J. Biol. Chem. 278, 17615–17624 (2003). (10.1074/jbc.M209686200) / J. Biol. Chem. by A Mogk (2003)
  22. Kedzierska, S., Akoev, V., Barnett, M.E. & Zolkiewski, M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 42, 14242–14248 (2003). (10.1021/bi035573d) / Biochemistry by S Kedzierska (2003)
  23. Haslberger, T. et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25, 247–260 (2007). (10.1016/j.molcel.2006.11.008) / Mol. Cell by T Haslberger (2007)
  24. Schirmer, E.C., Homann, O.R., Kowal, A.S. & Lindquist, S. Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region. Mol. Biol. Cell 15, 2061–2072 (2004). (10.1091/mbc.e02-08-0502) / Mol. Biol. Cell by EC Schirmer (2004)
  25. Miot, M. et al. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc. Natl. Acad. Sci. USA 108, 6915–6920 (2011). (10.1073/pnas.1102828108) / Proc. Natl. Acad. Sci. USA by M Miot (2011)
  26. Sielaff, B. & Tsai, F.T. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J. Mol. Biol. 402, 30–37 (2010). (10.1016/j.jmb.2010.07.030) / J. Mol. Biol. by B Sielaff (2010)
  27. Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H. & Mogk, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28, 315–325 (2009). (10.1038/emboj.2008.269) / EMBO J. by G Bönemann (2009)
  28. Pietrosiuk, A. et al. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J. Biol. Chem. 30010–30021 (2011). (10.1074/jbc.M111.253377)
  29. Oguchi, Y. et al. A tightly regulated molecular toggle controls AAA+ disaggregase. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.2441 (18 November 2012). (10.1038/nsmb.2441)
  30. Franzmann, T.M., Czekalla, A. & Walter, S.G. Regulatory circuits of the AAA+ disaggregase Hsp104. J. Biol. Chem. 286, 17992–18001 (2011). (10.1074/jbc.M110.216176) / J. Biol. Chem. by TM Franzmann (2011)
  31. Haslberger, T. et al. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nat. Struct. Mol. Biol. 15, 641–650 (2008). (10.1038/nsmb.1425) / Nat. Struct. Mol. Biol. by T Haslberger (2008)
  32. Werbeck, N.D., Schlee, S. & Reinstein, J. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J. Mol. Biol. 378, 178–190 (2008). (10.1016/j.jmb.2008.02.026) / J. Mol. Biol. by ND Werbeck (2008)
  33. del Castillo, U., Fernandez-Higuero, J.A., Perez-Acebron, S., Moro, F. & Muga, A. Nucleotide utilization requirements that render ClpB active as a chaperone. FEBS Lett. 584, 929–934 (2010). (10.1016/j.febslet.2010.01.029) / FEBS Lett. by U del Castillo (2010)
  34. Hoskins, J.R., Doyle, S.M. & Wickner, S. Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Proc. Natl. Acad. Sci. USA 22233–22238 (2009). (10.1073/pnas.0911937106)
  35. Laufen, T. et al. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96, 5452–5457 (1999). (10.1073/pnas.96.10.5452) / Proc. Natl. Acad. Sci. USA by T Laufen (1999)
  36. Winkler, J. et al. Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J. 29, 910–923 (2010). (10.1038/emboj.2009.412) / EMBO J. by J Winkler (2010)
  37. Kumar, M. & Sourjik, V. Physical map and dynamics of the chaperone network in Escherichia coli. Mol. Microbiol. 84, 736–747 (2012). (10.1111/j.1365-2958.2012.08054.x) / Mol. Microbiol. by M Kumar (2012)
  38. Lee, S., Sielaff, B., Lee, J. & Tsai, F.T. CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc. Natl. Acad. Sci. USA 107, 8135–8140 (2010). (10.1073/pnas.1003572107) / Proc. Natl. Acad. Sci. USA by S Lee (2010)
  39. Sharma, S.K., De los Rios, P., Christen, P., Lustig, A. & Goloubinoff, P. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat. Chem. Biol. 6, 914–920 (2010). (10.1038/nchembio.455) / Nat. Chem. Biol. by SK Sharma (2010)
  40. Konieczny, I. & Liberek, K. Cooperative action of Escherichia coli ClpB protein and DnaK chaperone in the activation of a replication initiation protein. J. Biol. Chem. 277, 18483–18488 (2002). (10.1074/jbc.M107580200) / J. Biol. Chem. by I Konieczny (2002)
  41. Doyle, S.M., Hoskins, J.R. & Wickner, S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl. Acad. Sci. USA 104, 11138–11144 (2007). (10.1073/pnas.0703980104) / Proc. Natl. Acad. Sci. USA by SM Doyle (2007)
  42. Tessarz, P., Mogk, A. & Bukau, B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol. Microbiol. 68, 87–97 (2008). (10.1111/j.1365-2958.2008.06135.x) / Mol. Microbiol. by P Tessarz (2008)
  43. Andréasson, C., Fiaux, J., Rampelt, H., Druffel-Augustin, S. & Bukau, B. Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. USA 105, 16519–16524 (2008). (10.1073/pnas.0804187105) / Proc. Natl. Acad. Sci. USA by C Andréasson (2008)
  44. Block, S.M., Segall, J.E. & Berg, H.C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323 (1983). (10.1128/JB.154.1.312-323.1983) / J. Bacteriol. by SM Block (1983)
  45. Kentner, D. & Sourjik, V. Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Mol. Syst. Biol. 5, 238 (2009). (10.1038/msb.2008.77) / Mol. Syst. Biol. by D Kentner (2009)
Dates
Type When
Created 12 years, 9 months ago (Nov. 18, 2012, 3:54 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:33 a.m.)
Indexed 21 hours, 48 minutes ago (Aug. 31, 2025, 6:27 a.m.)
Issued 12 years, 9 months ago (Nov. 18, 2012)
Published 12 years, 9 months ago (Nov. 18, 2012)
Published Online 12 years, 9 months ago (Nov. 18, 2012)
Published Print 12 years, 9 months ago (Dec. 1, 2012)
Funders 0

None

@article{Seyffer_2012, title={Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces}, volume={19}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2442}, DOI={10.1038/nsmb.2442}, number={12}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Seyffer, Fabian and Kummer, Eva and Oguchi, Yuki and Winkler, Juliane and Kumar, Mohit and Zahn, Regina and Sourjik, Victor and Bukau, Bernd and Mogk, Axel}, year={2012}, month=nov, pages={1347–1355} }