Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Mao, Y., Wang, L., Gu, C., Herschhorn, A., Xiang, S.-H., Haim, H., Yang, X., & Sodroski, J. (2012). Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer. Nature Structural & Molecular Biology, 19(9), 893–899.

Authors 8
  1. Youdong Mao (first)
  2. Liping Wang (additional)
  3. Christopher Gu (additional)
  4. Alon Herschhorn (additional)
  5. Shi-Hua Xiang (additional)
  6. Hillel Haim (additional)
  7. Xinzhen Yang (additional)
  8. Joseph Sodroski (additional)
References 60 Referenced 137
  1. Barré-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983). (10.1126/science.6189183) / Science by F Barré-Sinoussi (1983)
  2. Allan, J.S. et al. Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228, 1091–1094 (1985). (10.1126/science.2986290) / Science by JS Allan (1985)
  3. Moulard, M. & Decroly, E. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta 1469, 121–132 (2000). (10.1016/S0304-4157(00)00014-9) / Biochim. Biophys. Acta by M Moulard (2000)
  4. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998). (10.1126/science.280.5371.1884) / Science by R Wyatt (1998)
  5. Barin, F. et al. Virus envelope protein of HTLV-III represents major target antigen for antibodies in AIDS patients. Science 228, 1094–1096 (1985). (10.1126/science.2986291) / Science by F Barin (1985)
  6. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998). (10.1038/31405) / Nature by PD Kwong (1998)
  7. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007). (10.1038/nature05580) / Nature by T Zhou (2007)
  8. Pancera, M. et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc. Natl. Acad. Sci. USA 107, 1166–1171 (2010). (10.1073/pnas.0911004107) / Proc. Natl. Acad. Sci. USA by M Pancera (2010)
  9. Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997). (10.1038/387426a0) / Nature by W Weissenhorn (1997)
  10. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997). (10.1016/S0092-8674(00)80205-6) / Cell by DC Chan (1997)
  11. Buzon, V. et al. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog. 6, e1000880 (2010). (10.1371/journal.ppat.1000880) / PLoS Pathog. by V Buzon (2010)
  12. Zhu, P. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441, 847–852 (2006). (10.1038/nature04817) / Nature by P Zhu (2006)
  13. Zanetti, G., Briggs, J.A.G., Grunewald, K., Sattentau, Q.J. & Fuller, S.D. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog. 2, e83 (2006). (10.1371/journal.ppat.0020083) / PLoS Pathog. by G Zanetti (2006)
  14. Liu, J., Bartesaghi, A., Borgnia, M.J., Sapiro, G. & Subramanian, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008). (10.1038/nature07159) / Nature by J Liu (2008)
  15. White, T.A. et al. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog. 6, e1001249 (2010). (10.1371/journal.ppat.1001249) / PLoS Pathog. by TA White (2010)
  16. Wu, S.R. et al. Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure. Proc. Natl. Acad. Sci. USA 107, 18844–18849 (2010). (10.1073/pnas.1007227107) / Proc. Natl. Acad. Sci. USA by SR Wu (2010)
  17. Harris, A. et al. Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proc. Natl. Acad. Sci. USA 108, 11440–11445 (2011). (10.1073/pnas.1101414108) / Proc. Natl. Acad. Sci. USA by A Harris (2011)
  18. Hu, G., Liu, J., Taylor, K.A. & Roux, K.H. Structural comparison of HIV-1 envelope spikes with and without the V1/V2 loop. J. Virol. 85, 2741–2750 (2011). (10.1128/JVI.01612-10) / J. Virol. by G Hu (2011)
  19. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State (Oxford Univ. Press, 2006). (10.1093/acprof:oso/9780195182187.003.0002)
  20. Sigworth, F.J. A maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122, 328–339 (1998). (10.1006/jsbi.1998.4014) / J. Struct. Biol. by FJ Sigworth (1998)
  21. Scheres, S.H.W. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005). (10.1016/j.jmb.2005.02.031) / J. Mol. Biol. by SHW Scheres (2005)
  22. Liao, H.Y. & Frank, J. Definition and estimation of resolution in single-particle reconstructions. Structure 18, 768–775 (2010). (10.1016/j.str.2010.05.008) / Structure by HY Liao (2010)
  23. Sattentau, Q.J. & Moore, J.P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991). (10.1084/jem.174.2.407) / J. Exp. Med. by QJ Sattentau (1991)
  24. Myszka, D.G. et al. Energetics of the HIV gp120–CD4 binding reaction. Proc. Natl. Acad. Sci. USA 97, 9026–9031 (2000). (10.1073/pnas.97.16.9026) / Proc. Natl. Acad. Sci. USA by DG Myszka (2000)
  25. Yuan, W., Bazick, J. & Sodroski, J. Characterization of the multiple conformational states of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J. Virol. 80, 6725–6737 (2006). (10.1128/JVI.00118-06) / J. Virol. by W Yuan (2006)
  26. Xiang, S.H. et al. A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer. J. Virol. 84, 3147–3161 (2010). (10.1128/JVI.02587-09) / J. Virol. by SH Xiang (2010)
  27. Finzi, A. et al. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol. Cell 37, 656–667 (2010). (10.1016/j.molcel.2010.02.012) / Mol. Cell by A Finzi (2010)
  28. Xiang, S.H. et al. Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J. Virol. 76, 9888–9899 (2002). (10.1128/JVI.76.19.9888-9899.2002) / J. Virol. by SH Xiang (2002)
  29. Chen, B. et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433, 834–841 (2005). (10.1038/nature03327) / Nature by B Chen (2005)
  30. McLellan, J.S. et al. Structure of HIV-1 gp120 V1V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011). (10.1038/nature10696) / Nature by JS McLellan (2011)
  31. Mische, C.C. et al. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor. Virology 338, 133–143 (2005). (10.1016/j.virol.2005.05.001) / Virology by CC Mische (2005)
  32. Helseth, E., Olshevsky, U., Furman, C. & Sodroski, J. Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein. J. Virol. 65, 2119–2123 (1991). (10.1128/JVI.65.4.2119-2123.1991) / J. Virol. by E Helseth (1991)
  33. Wang, S. et al. Interhelical interactions in the gp41 core: implications for activation of HIV-1 membrane fusion. Biochemistry 41, 7283–7292 (2002). (10.1021/bi025648y) / Biochemistry by S Wang (2002)
  34. Dimitrov, A.S., Louis, J.M., Bewley, C.A., Clore, G.M. & Blumenthal, R. Conformational changes in HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion and inactivation. Biochemistry 44, 12471–12479 (2005). (10.1021/bi051092d) / Biochemistry by AS Dimitrov (2005)
  35. Sen, J. et al. Alanine scanning mutagenesis of HIV-1 gp41 heptad repeat 1: insight into the gp120-gp41 interaction. Biochemistry 49, 5057–5065 (2010). (10.1021/bi1005267) / Biochemistry by J Sen (2010)
  36. Chertova, E. et al. Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J. Virol. 76, 5315–5325 (2002). (10.1128/JVI.76.11.5315-5325.2002) / J. Virol. by E Chertova (2002)
  37. Rossio, J.L. et al. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J. Virol. 72, 7992–8001 (1998). (10.1128/JVI.72.10.7992-8001.1998) / J. Virol. by JL Rossio (1998)
  38. Chakrabarti, B.K. et al. HIV type 1 Env precursor cleavage state affects recognition by both neutralizing and nonneutralizing gp41 antibodies. AIDS Res. Hum. Retroviruses 27, 877–887 (2011). (10.1089/aid.2010.0281) / AIDS Res. Hum. Retroviruses by BK Chakrabarti (2011)
  39. Pancera, M. & Wyatt, R. Selective recognition of oligomeric HIV-1 primary isolate envelope glycoproteins by potently neutralizing ligands requires efficient precursor cleavage. Virology 332, 145–156 (2005). (10.1016/j.virol.2004.10.042) / Virology by M Pancera (2005)
  40. Edwards, T.G. et al. Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J. Virol. 76, 2683–2691 (2002). (10.1128/JVI.76.6.2683-2691.2002) / J. Virol. by TG Edwards (2002)
  41. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008). (10.1038/nsmb.1456) / Nat. Struct. Mol. Biol. by SC Harrison (2008)
  42. Kwon, Y.D. et al. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc. Natl. Acad. Sci. USA 109, 5663–5668 (2012). (10.1073/pnas.1112391109) / Proc. Natl. Acad. Sci. USA by YD Kwon (2012)
  43. Musich, T. et al. A conserved determinant in the V1 loop of HIV-1 modulates the V3 loop to prime low CD4 use and macrophage infection. J. Virol. 85, 2397–2405 (2011). (10.1128/JVI.02187-10) / J. Virol. by T Musich (2011)
  44. Kolchinsky, P., Kiprilov, E., Bartley, P., Rubenstein, R. & Sodroski, J. Loss of a single N-linked glycan allows CD4-independent HIV-1 infection by altering the position of the gp120 V1/V2 variable loops. J. Virol. 75, 3435–3443 (2001). (10.1128/JVI.75.7.3435-3443.2001) / J. Virol. by P Kolchinsky (2001)
  45. Zhang, P.F. et al. A variable region 3 (V3) mutation determines a global neutralization phenotype and CD4-independent infectivity of a human immunodeficiency virus type 1 envelope associated with a broadly cross-reactive, primary virus-neutralizing antibody response. J. Virol. 76, 644–655 (2002). (10.1128/JVI.76.2.644-655.2002) / J. Virol. by PF Zhang (2002)
  46. Walker, L.M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009). (10.1126/science.1178746) / Science by LM Walker (2009)
  47. Trkola, A. et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70, 1100–1108 (1996). (10.1128/JVI.70.2.1100-1108.1996) / J. Virol. by A Trkola (1996)
  48. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010). (10.1126/science.1187659) / Science by X Wu (2010)
  49. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010). (10.1126/science.1192819) / Science by T Zhou (2010)
  50. Zhang, X., Jin, L., Fang, Q., Hui, W.H. & Zhou, Z.H. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472–482 (2010). (10.1016/j.cell.2010.03.041) / Cell by X Zhang (2010)
  51. Lau, W.C.Y. & Rubinstein, J.L. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481, 214–218 (2012). (10.1038/nature10699) / Nature by WCY Lau (2012)
  52. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009). (10.1126/science.1178535) / Science by T Becker (2009)
  53. Binley, J.M. et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627–643 (2000). (10.1128/JVI.74.2.627-643.2000) / J. Virol. by JM Binley (2000)
  54. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103 (2011). (10.1126/science.1213256) / Science by R Pejchal (2011)
  55. Herschhorn, A., Marasco, W.A. & Hizi, A. Antibodies and lentiviruses that specifically recognize a T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. J. Immunol. 185, 7623–7632 (2010). (10.4049/jimmunol.1001561) / J. Immunol. by A Herschhorn (2010)
  56. Huang, Z., Baldwin, P.R., Mullapudi, S. & Penczek, P.A. Automated determination of parameters describing power spectra of micrograph images in electron microscopy. J. Struct. Biol. 144, 79–94 (2003). (10.1016/j.jsb.2003.10.011) / J. Struct. Biol. by Z Huang (2003)
  57. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  58. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008). (10.1038/nprot.2008.156) / Nat. Protoc. by TR Shaikh (2008)
  59. Scheres, S.H.W., Nunez-Ramirez, R., Sorzano, C.O.S. & Carazo, J.M. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008). (10.1038/nprot.2008.62) / Nat. Protoc. by SHW Scheres (2008)
  60. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (10.1002/jcc.20084) / J. Comput. Chem. by EF Pettersen (2004)
Dates
Type When
Created 13 years ago (Aug. 5, 2012, 2:06 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:32 a.m.)
Indexed 3 weeks, 3 days ago (Aug. 7, 2025, 4:40 p.m.)
Issued 13 years ago (Aug. 5, 2012)
Published 13 years ago (Aug. 5, 2012)
Published Online 13 years ago (Aug. 5, 2012)
Published Print 13 years ago (Sept. 1, 2012)
Funders 0

None

@article{Mao_2012, title={Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer}, volume={19}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2351}, DOI={10.1038/nsmb.2351}, number={9}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Mao, Youdong and Wang, Liping and Gu, Christopher and Herschhorn, Alon and Xiang, Shi-Hua and Haim, Hillel and Yang, Xinzhen and Sodroski, Joseph}, year={2012}, month=aug, pages={893–899} }