Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Gupta, S., Gellert, M., & Yang, W. (2011). Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nature Structural & Molecular Biology, 19(1), 72–78.

Authors 3
  1. Shikha Gupta (first)
  2. Martin Gellert (additional)
  3. Wei Yang (additional)
References 53 Referenced 148
  1. Iyer, R.R., Pluciennik, A., Burdett, V. & Modrich, P.L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006). (10.1021/cr0404794) / Chem. Rev. by RR Iyer (2006)
  2. Junop, M.S., Obmolova, G., Rausch, K., Hsieh, P. & Yang, W. Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol. Cell 7, 1–12 (2001). (10.1016/S1097-2765(01)00149-6) / Mol. Cell by MS Junop (2001)
  3. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2–MSH6 and MLH1–PMS1 protein complexes. J. Biol. Chem. 273, 9837–9841 (1998). (10.1074/jbc.273.16.9837) / J. Biol. Chem. by Y Habraken (1998)
  4. Mendillo, M.L. et al. A conserved MutS homolog connector domain interface interacts with MutL homologs. Proc. Natl. Acad. Sci. USA 106, 22223–22228 (2009). (10.1073/pnas.0912250106) / Proc. Natl. Acad. Sci. USA by ML Mendillo (2009)
  5. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6, 1185–1187 (1996). (10.1016/S0960-9822(02)70686-6) / Curr. Biol. by Y Habraken (1996)
  6. Palombo, F. et al. hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6, 1181–1184 (1996). (10.1016/S0960-9822(02)70685-4) / Curr. Biol. by F Palombo (1996)
  7. Harfe, B.D. & Jinks-Robertson, S. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics 156, 571–578 (2000). (10.1093/genetics/156.2.571) / Genetics by BD Harfe (2000)
  8. Surtees, J.A. & Alani, E. Mismatch repair factor MSH2–MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J. Mol. Biol. 360, 523–536 (2006). (10.1016/j.jmb.2006.05.032) / J. Mol. Biol. by JA Surtees (2006)
  9. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996). (10.1101/gad.10.4.407) / Genes Dev. by GT Marsischky (1996)
  10. Herman, J.G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95, 6870–6875 (1998). (10.1073/pnas.95.12.6870) / Proc. Natl. Acad. Sci. USA by JG Herman (1998)
  11. de Wind, N. et al. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat. Genet. 23, 359–362 (1999). (10.1038/15544) / Nat. Genet. by N de Wind (1999)
  12. Sia, E.A., Dominska, M., Stefanovic, L. & Petes, T.D. Isolation and characterization of point mutations in mismatch repair genes that destabilize microsatellites in yeast. Mol. Cell Biol. 21, 8157–8167 (2001). (10.1128/MCB.21.23.8157-8167.2001) / Mol. Cell Biol. by EA Sia (2001)
  13. Edelmann, W. et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res. 60, 803–807 (2000). / Cancer Res. by W Edelmann (2000)
  14. Peltomäki, P. Lynch syndrome genes. Fam. Cancer 4, 227–232 (2005). (10.1007/s10689-004-7993-0) / Fam. Cancer by P Peltomäki (2005)
  15. Haugen, A.C. et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res. 68, 8465–8472 (2008). (10.1158/0008-5472.CAN-08-0002) / Cancer Res. by AC Haugen (2008)
  16. Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407, 703–710 (2000). (10.1038/35037509) / Nature by G Obmolova (2000)
  17. Lamers, M.H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407, 711–717 (2000). (10.1038/35037523) / Nature by MH Lamers (2000)
  18. Warren, J.J. et al. Structure of the human MutSalpha DNA lesion recognition complex. Mol. Cell 26, 579–592 (2007). (10.1016/j.molcel.2007.04.018) / Mol. Cell by JJ Warren (2007)
  19. Bowers, J., Sokolsky, T., Quach, T. & Alani, E. A mutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2–MSH6 complex disrupts mismatch recognition. J. Biol. Chem. 274, 16115–16125 (1999). (10.1074/jbc.274.23.16115) / J. Biol. Chem. by J Bowers (1999)
  20. Drotschmann, K., Yang, W., Brownewell, F.E., Kool, E.T. & Kunkel, T.A. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2–Msh6. J. Biol. Chem. 276, 46225–46229 (2001). (10.1074/jbc.C100450200) / J. Biol. Chem. by K Drotschmann (2001)
  21. Dowen, J.M., Putnam, C.D. & Kolodner, R.D. Functional studies and homology modeling of Msh2–Msh3 predict that mispair recognition involves DNA bending and strand separation. Mol. Cell Biol. 30, 3321–3328 (2010). (10.1128/MCB.01558-09) / Mol. Cell Biol. by JM Dowen (2010)
  22. Lee, S.D., Surtees, J.A. & Alani, E. Saccharomyces cerevisiae MSH2–MSH3 and MSH2–MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition. J. Mol. Biol. 366, 53–66 (2007). (10.1016/j.jmb.2006.10.099) / J. Mol. Biol. by SD Lee (2007)
  23. Shell, S.S., Putnam, C.D. & Kolodner, R.D. Chimeric Saccharomyces cerevisiae Msh6 protein with an Msh3 mispair-binding domain combines properties of both proteins. Proc. Natl. Acad. Sci. USA 104, 10956–10961 (2007). (10.1073/pnas.0704148104) / Proc. Natl. Acad. Sci. USA by SS Shell (2007)
  24. Kirkpatrick, D.T. & Petes, T.D. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387, 929–931 (1997). (10.1038/43225) / Nature by DT Kirkpatrick (1997)
  25. Sugawara, N., Paques, F., Colaiacovo, M. & Haber, J.E. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. USA 94, 9214–9219 (1997). (10.1073/pnas.94.17.9214) / Proc. Natl. Acad. Sci. USA by N Sugawara (1997)
  26. Lyndaker, A.M. & Alani, E. A tale of tails: insights into the coordination of 3′ end processing during homologous recombination. Bioessays 31, 315–321 (2009). (10.1002/bies.200800195) / Bioessays by AM Lyndaker (2009)
  27. van den Broek, W.J. et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198 (2002). (10.1093/hmg/11.2.191) / Hum. Mol. Genet. by WJ van den Broek (2002)
  28. López Castel, A., Cleary, J.D. & Pearson, C.E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11, 165–170 (2010). (10.1038/nrm2854) / Nat. Rev. Mol. Cell Biol. by A López Castel (2010)
  29. McMurray, C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010). (10.1038/nrg2828) / Nat. Rev. Genet. by CT McMurray (2010)
  30. Tian, L. et al. Mismatch recognition protein MutSbeta does not hijack (CAG)n hairpin repair in vitro. J. Biol. Chem. 284, 20452–20456 (2009). (10.1074/jbc.C109.014977) / J. Biol. Chem. by L Tian (2009)
  31. Hou, C., Chan, N.L., Gu, L. & Li, G.M. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869–875 (2009). (10.1038/nsmb.1638) / Nat. Struct. Mol. Biol. by C Hou (2009)
  32. Panigrahi, G.B., Slean, M.M., Simard, J.P., Gileadi, O. & Pearson, C.E. Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired. Proc. Natl. Acad. Sci. USA 107, 12593–12598 (2010). (10.1073/pnas.0909087107) / Proc. Natl. Acad. Sci. USA by GB Panigrahi (2010)
  33. Wilson, T., Guerrette, S. & Fishel, R. Dissociation of mismatch recognition and ATPase activity by hMSH2–hMSH3. J. Biol. Chem. 274, 21659–21664 (1999). (10.1074/jbc.274.31.21659) / J. Biol. Chem. by T Wilson (1999)
  34. Tian, L., Gu, L. & Li, G.M. Distinct nucleotide binding/hydrolysis properties and molar ratio of MutSalpha and MutSbeta determine their differential mismatch binding activities. J. Biol. Chem. 284, 11557–11562 (2009). (10.1074/jbc.M900908200) / J. Biol. Chem. by L Tian (2009)
  35. Owen, B.A.L., Lang, W.H. & McMurray, C.T. The nucleotide binding dynamics of human MSH2–MSH3 are lesion dependent. Nat. Struct. Mol. Biol. 16, 550–557 (2009). (10.1038/nsmb.1596) / Nat. Struct. Mol. Biol. by BAL Owen (2009)
  36. Yang, W. Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair (Amst.) 5, 654–666 (2006). (10.1016/j.dnarep.2006.02.004) / DNA Repair (Amst.) by W Yang (2006)
  37. Natrajan, G. et al. Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates. Nucleic Acids Res. 31, 4814–4821 (2003). (10.1093/nar/gkg677) / Nucleic Acids Res. by G Natrajan (2003)
  38. Mendillo, M.L., Putnam, C.D. & Kolodner, R.D. Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo. J. Biol. Chem. 282, 16345–16354 (2007). (10.1074/jbc.M700858200) / J. Biol. Chem. by ML Mendillo (2007)
  39. Biswas, I. et al. Oligomerization of a MutS mismatch repair protein from Thermus aquaticus. J. Biol. Chem. 274, 23673–23678 (1999). (10.1074/jbc.274.33.23673) / J. Biol. Chem. by I Biswas (1999)
  40. Hess, M.T., Mendillo, M.L., Mazur, D.J. & Kolodner, R.D. Biochemical basis for dominant mutations in the Saccharomyces cerevisiae MSH6 gene. Proc. Natl. Acad. Sci. USA 103, 558–563 (2006). (10.1073/pnas.0510078103) / Proc. Natl. Acad. Sci. USA by MT Hess (2006)
  41. Alani, E., Sokolsky, T., Studamire, B., Miret, J.J. & Lahue, R.S. Genetic and biochemical analysis of Msh2p–Msh6p: role of ATP hydrolysis and Msh2p–Msh6p subunit interactions in mismatch base pair recognition. Mol. Cell Biol. 17, 2436–2447 (1997). (10.1128/MCB.17.5.2436) / Mol. Cell Biol. by E Alani (1997)
  42. Calmann, M.A., Nowosielska, A. & Marinus, M.G. The MutS C terminus is essential for mismatch repair activity in vivo. J. Bacteriol. 187, 6577–6579 (2005). (10.1128/JB.187.18.6577-6579.2005) / J. Bacteriol. by MA Calmann (2005)
  43. Mazur, D.J., Mendillo, M.L. & Kolodner, R.D. Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)–Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol. Cell 22, 39–49 (2006). (10.1016/j.molcel.2006.02.010) / Mol. Cell by DJ Mazur (2006)
  44. Drotschmann, K., Yang, W. & Kunkel, T.A. Evidence for sequential action of two ATPase active sites in yeast Msh2–Msh6. DNA Repair (Amst.) 1, 743–753 (2002). (10.1016/S1568-7864(02)00081-2) / DNA Repair (Amst.) by K Drotschmann (2002)
  45. Antony, E., Khubchandani, S., Chen, S. & Hingorani, M.M. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2–Msh6 mismatch repair protein. DNA Repair (Amst.) 5, 153–162 (2006). (10.1016/j.dnarep.2005.08.016) / DNA Repair (Amst.) by E Antony (2006)
  46. Nakahara, M., Yokozaki, H., Yasui, W., Dohi, K. & Tahara, E. Identification of concurrent germ-line mutations in hMSH2 and/or hMLH1 in Japanese hereditary nonpolyposis colorectal cancer kindreds. Cancer Epidemiol. Biomarkers Prev. 6, 1057–1064 (1997). / Cancer Epidemiol. Biomarkers Prev. by M Nakahara (1997)
  47. Bjornson, K.P., Allen, D.J. & Modrich, P. Modulation of MutS ATP hydrolysis by DNA cofactors. Biochemistry 39, 3176–3183 (2000). (10.1021/bi992286u) / Biochemistry by KP Bjornson (2000)
  48. Gradia, S. et al. hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255–261 (1999). (10.1016/S1097-2765(00)80316-0) / Mol. Cell by S Gradia (1999)
  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997). (10.1016/S0076-6879(97)76066-X) / Methods Enzymol. by Z Otwinowski (1997)
  50. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010). (10.1107/S0907444909042589) / Acta Crystallogr. D Biol. Crystallogr. by A Vagin (2010)
  51. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). (10.1107/S0907444910007493) / Acta Crystallogr. D Biol. Crystallogr. by P Emsley (2010)
  52. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998). (10.1107/S0907444998003254) / Acta Crystallogr. D Biol. Crystallogr. by AT Brünger (1998)
  53. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). (10.1107/S0907444909052925) / Acta Crystallogr. D Biol. Crystallogr. by PD Adams (2010)
Dates
Type When
Created 13 years, 8 months ago (Dec. 18, 2011, 1:14 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:30 a.m.)
Indexed 1 week, 4 days ago (Aug. 20, 2025, 9:14 a.m.)
Issued 13 years, 8 months ago (Dec. 18, 2011)
Published 13 years, 8 months ago (Dec. 18, 2011)
Published Online 13 years, 8 months ago (Dec. 18, 2011)
Published Print 13 years, 8 months ago (Jan. 1, 2012)
Funders 0

None

@article{Gupta_2011, title={Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops}, volume={19}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2175}, DOI={10.1038/nsmb.2175}, number={1}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Gupta, Shikha and Gellert, Martin and Yang, Wei}, year={2011}, month=dec, pages={72–78} }