Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Martins, S. B., Rino, J., Carvalho, T., Carvalho, C., Yoshida, M., Klose, J. M., de Almeida, S. F., & Carmo-Fonseca, M. (2011). Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nature Structural & Molecular Biology, 18(10), 1115–1123.

Authors 8
  1. Sandra Bento Martins (first)
  2. José Rino (additional)
  3. Teresa Carvalho (additional)
  4. Célia Carvalho (additional)
  5. Minoru Yoshida (additional)
  6. Jasmim Mona Klose (additional)
  7. Sérgio Fernandes de Almeida (additional)
  8. Maria Carmo-Fonseca (additional)
References 50 Referenced 75
  1. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997). (10.1038/385357a0) / Nature by S McCracken (1997)
  2. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009). (10.1016/j.cell.2009.02.001) / Cell by MJ Moore (2009)
  3. Fuda, N.J., Ardehali, M.B. & Lis, J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009). (10.1038/nature08449) / Nature by NJ Fuda (2009)
  4. de Almeida, S.F. & Carmo-Fonseca, M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett. 582, 1971–1976 (2008). (10.1016/j.febslet.2008.04.019) / FEBS Lett. by SF de Almeida (2008)
  5. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004). (10.1101/gad.1235904) / Genes Dev. by RJ Sims III (2004)
  6. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009). (10.1016/j.molcel.2009.10.019) / Mol. Cell by S Buratowski (2009)
  7. Brinster, R.L., Allen, J.M., Behringer, R.R., Gelinas, R.E. & Palmiter, R.D. Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840 (1988). (10.1073/pnas.85.3.836) / Proc. Natl. Acad. Sci. USA by RL Brinster (1988)
  8. Lu, S. & Cullen, B.R. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA 9, 618–630 (2003). (10.1261/rna.5260303) / RNA by S Lu (2003)
  9. Fong, Y.W. & Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001). (10.1038/414929a) / Nature by YW Fong (2001)
  10. Kameoka, S., Duque, P. & Konarska, M.M. p54(nrb) associates with the 5′ splice site within large transcription/splicing complexes. EMBO J. 23, 1782–1791 (2004). (10.1038/sj.emboj.7600187) / EMBO J. by S Kameoka (2004)
  11. Furger, A., O'Sullivan, J.M., Binnie, A., Lee, B.A. & Proudfoot, N.J. Promoter proximal splice sites enhance transcription. Genes Dev. 16, 2792–2799 (2002). (10.1101/gad.983602) / Genes Dev. by A Furger (2002)
  12. Brès, V., Gomes, N., Pickle, L. & Jones, K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 19, 1211–1226 (2005). (10.1101/gad.1291705) / Genes Dev. by V Brès (2005)
  13. Zorio, D.A. & Bentley, D.L. The link between mRNA processing and transcription: communication works both ways. Exp. Cell Res. 296, 91–97 (2004). (10.1016/j.yexcr.2004.03.019) / Exp. Cell Res. by DA Zorio (2004)
  14. Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S. & Fu, X.D. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15, 819–826 (2008). (10.1038/nsmb.1461) / Nat. Struct. Mol. Biol. by S Lin (2008)
  15. Lowary, P.T. & Uhlenbeck, O.C. An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res. 15, 10483–10493 (1987). (10.1093/nar/15.24.10483) / Nucleic Acids Res. by PT Lowary (1987)
  16. Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol. 179, 291–304 (2007). (10.1083/jcb.200706018) / J. Cell Biol. by S Boireau (2007)
  17. Chapman, R.D., Conrad, M. & Eick, D. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol. Cell. Biol. 25, 7665–7674 (2005). (10.1128/MCB.25.17.7665-7674.2005) / Mol. Cell. Biol. by RD Chapman (2005)
  18. Bushnell, D.A., Cramer, P. & Kornberg, R.D. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution. Proc. Natl. Acad. Sci. USA 99, 1218–1222 (2002). (10.1073/pnas.251664698) / Proc. Natl. Acad. Sci. USA by DA Bushnell (2002)
  19. Nguyen, V.T. et al. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 24, 2924–2929 (1996). (10.1093/nar/24.15.2924) / Nucleic Acids Res. by VT Nguyen (1996)
  20. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007). (10.1038/nsmb1280) / Nat. Struct. Mol. Biol. by X Darzacq (2007)
  21. Yunger, S., Rosenfeld, L., Garini, Y. & Shav-Tal, Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 7, 631–633 (2010). (10.1038/nmeth.1482) / Nat. Methods by S Yunger (2010)
  22. Dye, M.J. & Proudfoot, N.J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999). (10.1016/S1097-2765(00)80464-5) / Mol. Cell by MJ Dye (1999)
  23. Dye, M.J. & Proudfoot, N.J. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105, 669–681 (2001). (10.1016/S0092-8674(01)00372-5) / Cell by MJ Dye (2001)
  24. Gromak, N., West, S. & Proudfoot, N.J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006). (10.1128/MCB.26.10.3986-3996.2006) / Mol. Cell. Biol. by N Gromak (2006)
  25. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006). (10.1038/nsmb1135) / Nat. Struct. Mol. Biol. by I Listerman (2006)
  26. Berget, S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995). (10.1074/jbc.270.6.2411) / J. Biol. Chem. by SM Berget (1995)
  27. Custódio, N. et al. Inefficient processing impairs release of RNA from the site of transcription. EMBO J. 18, 2855–2866 (1999). (10.1093/emboj/18.10.2855) / EMBO J. by N Custódio (1999)
  28. de Almeida, S.F., Garcia-Sacristan, A., Custodio, N. & Carmo-Fonseca, M. A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res. 38, 8015–8026 (2010). (10.1093/nar/gkq703) / Nucleic Acids Res. by SF de Almeida (2010)
  29. Custódio, N. et al. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10, 622–633 (2004). (10.1261/rna.5258504) / RNA by N Custódio (2004)
  30. Damgaard, C.K. et al. A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol. Cell 29, 271–278 (2008). (10.1016/j.molcel.2007.11.035) / Mol. Cell by CK Damgaard (2008)
  31. West, S. & Proudfoot, N.J. Transcriptional termination enhances protein expression in human cells. Mol. Cell 33, 354–364 (2009). (10.1016/j.molcel.2009.01.008) / Mol. Cell by S West (2009)
  32. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007). (10.1038/nchembio.2007.18) / Nat. Chem. Biol. by D Kaida (2007)
  33. Roybal, G.A. & Jurica, M.S. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res. 38, 6664–6672 (2010). (10.1093/nar/gkq494) / Nucleic Acids Res. by GA Roybal (2010)
  34. Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011). (10.1101/gad.2014311) / Genes Dev. by A Corrionero (2011)
  35. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001). (10.1093/emboj/20.23.6877) / EMBO J. by SM Elbashir (2001)
  36. Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008). (10.1038/nsmb1352) / Nat. Struct. Mol. Biol. by K Glover-Cutter (2008)
  37. Wahl, M.C., Will, C.L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009). (10.1016/j.cell.2009.02.009) / Cell by MC Wahl (2009)
  38. Janicki, S.M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004). (10.1016/S0092-8674(04)00171-0) / Cell by SM Janicki (2004)
  39. Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K.M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010). (10.1016/j.molcel.2010.11.004) / Mol. Cell by F Carrillo Oesterreich (2010)
  40. Alexander, R.D., Innocente, S.A., Barrass, J.D. & Beggs, J.D. Splicing-dependent RNA polymerase pausing in yeast. Mol. Cell 40, 582–593 (2010). (10.1016/j.molcel.2010.11.005) / Mol. Cell by RD Alexander (2010)
  41. Niwa, M., Rose, S.D. & Berget, S.M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990). (10.1101/gad.4.9.1552) / Genes Dev. by M Niwa (1990)
  42. Niwa, M. & Berget, S.M. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5, 2086–2095 (1991). (10.1101/gad.5.11.2086) / Genes Dev. by M Niwa (1991)
  43. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011). (10.1371/journal.pbio.1000573) / PLoS Biol. by Y Brody (2011)
  44. O'Keefe, R.T., Mayeda, A., Sadowski, C.L., Krainer, A.R. & Spector, D.L. Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J. Cell Biol. 124, 249–260 (1994). (10.1083/jcb.124.3.249) / J. Cell Biol. by RT O'Keefe (1994)
  45. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000). (10.1016/S0092-8674(00)00214-2) / Cell by J Lykke-Andersen (2000)
  46. Barsoum, J. Introduction of stable high-copy-number DNA into Chinese hamster ovary cells by electroporation. DNA Cell Biol. 9, 293–300 (1990). (10.1089/dna.1990.9.293) / DNA Cell Biol. by J Barsoum (1990)
  47. Phair, R.D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000). (10.1038/35007077) / Nature by RD Phair (2000)
  48. Pacheco, T.R., Moita, L.F., Gomes, A.Q., Hacohen, N. & Carmo-Fonseca, M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol. Biol. Cell 17, 4187–4199 (2006). (10.1091/mbc.e06-01-0036) / Mol. Biol. Cell by TR Pacheco (2006)
  49. Nelson, J.D., Denisenko, O., Sova, P. & Bomsztyk, K. Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2 (2006). (10.1093/nar/gnj004) / Nucleic Acids Res. by JD Nelson (2006)
  50. Blencowe, B.J., Issner, R., Nickerson, J.A. & Sharp, P.A. A coactivator of pre-mRNA splicing. Genes Dev. 12, 996–1009 (1998). (10.1101/gad.12.7.996) / Genes Dev. by BJ Blencowe (1998)
Dates
Type When
Created 13 years, 11 months ago (Sept. 4, 2011, 1:55 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:29 a.m.)
Indexed 1 year ago (Aug. 4, 2024, 12:42 a.m.)
Issued 13 years, 11 months ago (Sept. 4, 2011)
Published 13 years, 11 months ago (Sept. 4, 2011)
Published Online 13 years, 11 months ago (Sept. 4, 2011)
Published Print 13 years, 10 months ago (Oct. 1, 2011)
Funders 0

None

@article{Martins_2011, title={Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes}, volume={18}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.2124}, DOI={10.1038/nsmb.2124}, number={10}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Martins, Sandra Bento and Rino, José and Carvalho, Teresa and Carvalho, Célia and Yoshida, Minoru and Klose, Jasmim Mona and de Almeida, Sérgio Fernandes and Carmo-Fonseca, Maria}, year={2011}, month=sep, pages={1115–1123} }