Crossref
journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Authors
12
- Joshua R Tietjen (first)
- David W Zhang (additional)
- Juan B Rodríguez-Molina (additional)
- Brent E White (additional)
- Md Sohail Akhtar (additional)
- Martin Heidemann (additional)
- Xin Li (additional)
- Rob D Chapman (additional)
- Kevan Shokat (additional)
- Sündüz Keles (additional)
- Dirk Eick (additional)
- Aseem Z Ansari (additional)
References
64
Referenced
127
-
Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).
(
10.1101/gad.1477006
) / Genes Dev. by HP Phatnani (2006) -
Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003).
(
10.1038/nsb0903-679
) / Nat. Struct. Biol. by S Buratowski (2003) -
Corden, J.L. Transcription: seven ups the code. Science 318, 1735–1736 (2007).
(
10.1126/science.1152624
) / Science by JL Corden (2007) -
Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).
(
10.1016/j.molcel.2009.09.018
) / Mol. Cell by R Perales (2009) -
Lee, T.I. & Young, R. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).
(
10.1146/annurev.genet.34.1.77
) / Annu. Rev. Genet. by TI Lee (2000) -
Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000).
(
10.1146/annurev.biochem.69.1.729
) / Annu. Rev. Biochem. by LC Myers (2000) -
Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).
(
10.1101/gad.1235904
) / Genes Dev. by RJ Sims III (2004) -
Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24, 1721–1735 (2004).
(
10.1128/MCB.24.4.1721-1735.2004
) / Mol. Cell. Biol. by Y Liu (2004) -
Ansari, A.Z., Ogirala, A. & Ptashne, M. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc. Natl. Acad. Sci. USA 102, 2346–2349 (2005).
(
10.1073/pnas.0409671102
) / Proc. Natl. Acad. Sci. USA by AZ Ansari (2005) -
Riedl, T. & Egly, J.M. Phosphorylation in transcription: the CTD and more. Gene Expr. 9, 3–13 (2000).
(
10.3727/000000001783992704
) / Gene Expr. by T Riedl (2000) -
Max, T., Sogaard, M. & Svejstrup, J. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007).
(
10.1074/jbc.M701345200
) / J. Biol. Chem. by T Max (2007) -
Schroeder, S.C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).
(
10.1101/gad.836300
) / Genes Dev. by SC Schroeder (2000) -
Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).
(
10.1101/gad.824700
) / Genes Dev. by P Komarnitsky (2000) -
Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).
(
10.1016/S1097-2765(03)00092-3
) / Mol. Cell by HH Ng (2003) -
Krogan, N.J. et al. Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).
(
10.1128/MCB.23.12.4207-4218.2003
) / Mol. Cell. Biol. by NJ Krogan (2003) -
Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).
(
10.1016/j.cell.2005.10.023
) / Cell by MJ Carrozza (2005) -
Mosley, A.L. et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 34, 168–178 (2009).
(
10.1016/j.molcel.2009.02.025
) / Mol. Cell by AL Mosley (2009) -
Brès, V., Yoh, S. & Jones, K. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 20, 334–340 (2008).
(
10.1016/j.ceb.2008.04.008
) / Curr. Opin. Cell Biol. by V Brès (2008) -
Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).
(
10.1016/j.molcel.2009.10.019
) / Mol. Cell by S Buratowski (2009) -
Kornblihtt, A.R., De La Mata, M., Fededa, J., Munoz, M. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).
(
10.1261/rna.7100104
) / RNA by AR Kornblihtt (2004) -
Wood, A. & Shilatifard, A. Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle 5, 1066–1068 (2006).
(
10.4161/cc.5.10.2769
) / Cell Cycle by A Wood (2006) -
Liu, Y. et al. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 29, 4852–4863 (2009).
(
10.1128/MCB.00609-09
) / Mol. Cell. Biol. by Y Liu (2009) -
Zhou, K., Kuo, W., Fillingham, J. & Greenblatt, J. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. Sci. USA 106, 6956–6961 (2009).
(
10.1073/pnas.0806302106
) / Proc. Natl. Acad. Sci. USA by K Zhou (2009) -
Chu, Y., Simic, R., Warner, M., Arndt, K. & Prelich, G. Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J. 26, 4646–4656 (2007).
(
10.1038/sj.emboj.7601887
) / EMBO J. by Y Chu (2007) -
Keogh, M.C., Podolny, V. & Buratowski, S. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol. Cell. Biol. 23, 7005–7018 (2003).
(
10.1128/MCB.23.19.7005-7018.2003
) / Mol. Cell. Biol. by MC Keogh (2003) -
Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).
(
10.1016/S0092-8674(02)00617-7
) / Cell by NJ Proudfoot (2002) -
Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).
(
10.1016/S1097-2765(02)00518-X
) / Mol. Cell by DD Licatalosi (2002) -
Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).
(
10.1016/S1097-2765(03)00492-1
) / Mol. Cell by SH Ahn (2004) -
Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).
(
10.1101/gad.935901
) / Genes Dev. by EJ Cho (2001) -
Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. & Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387–394 (2004).
(
10.1016/S1097-2765(04)00235-7
) / Mol. Cell by S Krishnamurthy (2004) -
Steinmetz, E.J., Conrad, N., Brow, D. & Corden, J. RNA-binding protein Nrd1 directs poly (A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001).
(
10.1038/35095090
) / Nature by EJ Steinmetz (2001) -
Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777–1779 (2007).
(
10.1126/science.1145989
) / Science by S Egloff (2007) -
Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).
(
10.1016/j.cell.2005.08.019
) / Cell by D Baillat (2005) -
Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).
(
10.1126/science.1145977
) / Science by RD Chapman (2007) -
Stiller, J.W., Mcconaughy, B. & Hall, B. Evolutionary complementation for polymerase II CTD function. Yeast 16, 57–64 (2000).
(
10.1002/(SICI)1097-0061(20000115)16:1<57::AID-YEA509>3.0.CO;2-E
) / Yeast by JW Stiller (2000) -
Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).
(
10.1016/j.tig.2008.03.008
) / Trends Genet. by S Egloff (2008) -
Jenuwein, T. & Allis, C. Translating the histone code. Science 293, 1074–1080 (2001).
(
10.1126/science.1063127
) / Science by T Jenuwein (2001) -
Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).
(
10.1101/gad.1398206
) / Genes Dev. by NP Gomes (2006) -
Medlin, J. et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24, 4154–4165 (2005).
(
10.1038/sj.emboj.7600876
) / EMBO J. by J Medlin (2005) -
Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007).
(
10.1073/pnas.0611505104
) / Proc. Natl. Acad. Sci. USA by EI Kanin (2007) -
Lee, K.M. et al. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol. Biol. Cell 16, 2734–2745 (2005).
(
10.1091/mbc.e04-11-0982
) / Mol. Biol. Cell by KM Lee (2005) -
Serizawa, H., Conaway, J. & Conaway, R. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363, 371–374 (1993).
(
10.1038/363371a0
) / Nature by H Serizawa (1993) -
Akhtar, M.S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).
(
10.1016/j.molcel.2009.04.016
) / Mol. Cell by MS Akhtar (2009) -
Kim, M., Suh, H., Cho, E. & Buratowski, S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009).
(
10.1074/jbc.M109.028993
) / J. Biol. Chem. by M Kim (2009) -
Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).
(
10.1128/MCB.00637-09
) / Mol. Cell. Biol. by K Glover-Cutter (2009) -
Patturajan, M., Conrad, N., Bregman, D. & Corden, J. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation. J. Biol. Chem. 274, 27823–27828 (1999).
(
10.1074/jbc.274.39.27823
) / J. Biol. Chem. by M Patturajan (1999) -
Viladevall, L. et al. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009).
(
10.1016/j.molcel.2009.01.029
) / Mol. Cell by L Viladevall (2009) -
Qiu, H., Hu, C. & Hinnebusch, A. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33, 752–762 (2009).
(
10.1016/j.molcel.2009.02.018
) / Mol. Cell by H Qiu (2009) -
Steinmetz, E.J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735–746 (2006).
(
10.1016/j.molcel.2006.10.023
) / Mol. Cell by EJ Steinmetz (2006) -
Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009).
(
10.1038/nature07747
) / Nature by H Neil (2009) -
Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).
(
10.1038/nature07728
) / Nature by Z Xu (2009) -
Holstege, F.C. & Young, R. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).
(
10.1016/S0092-8674(00)81641-4
) / Cell by FC Holstege (1998) -
Venters, B.J. & Pugh, B. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009).
(
10.1101/gr.084970.108
) / Genome Res. by BJ Venters (2009) -
Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).
(
10.1016/j.chembiol.2005.04.011
) / Chem. Biol. by ZA Knight (2005) -
Ahn, S.H., Keogh, M. & Buratowski, S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II EMBO Open. EMBO J. 28, 205–212 (2009).
(
10.1038/emboj.2008.280
) / EMBO J. by SH Ahn (2009) -
Arigo, J.T., Eyler, D., Carroll, K. & Corden, J. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006).
(
10.1016/j.molcel.2006.07.024
) / Mol. Cell by JT Arigo (2006) -
Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853–864 (2006).
(
10.1016/j.molcel.2006.07.029
) / Mol. Cell by M Thiebaut (2006) -
Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723–734 (2006).
(
10.1016/j.molcel.2006.11.011
) / Mol. Cell by M Kim (2006) -
Sheldon, K.E., Mauger, D. & Arndt, K. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation. Mol. Cell 20, 225–236 (2005).
(
10.1016/j.molcel.2005.08.026
) / Mol. Cell by KE Sheldon (2005) -
Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).
(
10.1038/ng2117
) / Nat. Genet. by W Lee (2007) -
Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007).
(
10.1073/pnas.0611505104
) / Proc. Natl. Acad. Sci. USA by EI Kanin (2007) -
Rousseeuw, P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
(
10.1016/0377-0427(87)90125-7
) / J. Comput. Appl. Math. by P Rousseeuw (1987) -
Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).
(
10.1038/nature02800
) / Nature by CT Harbison (2004) -
Ansari, A.Z., Ogirala, A. & Ptashne, M. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc. Natl. Acad. Sci. USA 102, 2346–2349 (2005).
(
10.1073/pnas.0409671102
) / Proc. Natl. Acad. Sci. USA by AZ Ansari (2005)
Dates
Type | When |
---|---|
Created | 15 years ago (Aug. 29, 2010, 1:28 p.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:27 a.m.) |
Indexed | 1 week ago (Aug. 29, 2025, 6:20 a.m.) |
Issued | 15 years ago (Aug. 29, 2010) |
Published | 15 years ago (Aug. 29, 2010) |
Published Online | 15 years ago (Aug. 29, 2010) |
Published Print | 15 years ago (Sept. 1, 2010) |
@article{Tietjen_2010, title={Chemical-genomic dissection of the CTD code}, volume={17}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.1900}, DOI={10.1038/nsmb.1900}, number={9}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Tietjen, Joshua R and Zhang, David W and Rodríguez-Molina, Juan B and White, Brent E and Akhtar, Md Sohail and Heidemann, Martin and Li, Xin and Chapman, Rob D and Shokat, Kevan and Keles, Sündüz and Eick, Dirk and Ansari, Aseem Z}, year={2010}, month=aug, pages={1154–1161} }