Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Tietjen, J. R., Zhang, D. W., Rodríguez-Molina, J. B., White, B. E., Akhtar, M. S., Heidemann, M., Li, X., Chapman, R. D., Shokat, K., Keles, S., Eick, D., & Ansari, A. Z. (2010). Chemical-genomic dissection of the CTD code. Nature Structural & Molecular Biology, 17(9), 1154–1161.

Authors 12
  1. Joshua R Tietjen (first)
  2. David W Zhang (additional)
  3. Juan B Rodríguez-Molina (additional)
  4. Brent E White (additional)
  5. Md Sohail Akhtar (additional)
  6. Martin Heidemann (additional)
  7. Xin Li (additional)
  8. Rob D Chapman (additional)
  9. Kevan Shokat (additional)
  10. Sündüz Keles (additional)
  11. Dirk Eick (additional)
  12. Aseem Z Ansari (additional)
References 64 Referenced 127
  1. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006). (10.1101/gad.1477006) / Genes Dev. by HP Phatnani (2006)
  2. Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003). (10.1038/nsb0903-679) / Nat. Struct. Biol. by S Buratowski (2003)
  3. Corden, J.L. Transcription: seven ups the code. Science 318, 1735–1736 (2007). (10.1126/science.1152624) / Science by JL Corden (2007)
  4. Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009). (10.1016/j.molcel.2009.09.018) / Mol. Cell by R Perales (2009)
  5. Lee, T.I. & Young, R. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000). (10.1146/annurev.genet.34.1.77) / Annu. Rev. Genet. by TI Lee (2000)
  6. Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000). (10.1146/annurev.biochem.69.1.729) / Annu. Rev. Biochem. by LC Myers (2000)
  7. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004). (10.1101/gad.1235904) / Genes Dev. by RJ Sims III (2004)
  8. Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24, 1721–1735 (2004). (10.1128/MCB.24.4.1721-1735.2004) / Mol. Cell. Biol. by Y Liu (2004)
  9. Ansari, A.Z., Ogirala, A. & Ptashne, M. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc. Natl. Acad. Sci. USA 102, 2346–2349 (2005). (10.1073/pnas.0409671102) / Proc. Natl. Acad. Sci. USA by AZ Ansari (2005)
  10. Riedl, T. & Egly, J.M. Phosphorylation in transcription: the CTD and more. Gene Expr. 9, 3–13 (2000). (10.3727/000000001783992704) / Gene Expr. by T Riedl (2000)
  11. Max, T., Sogaard, M. & Svejstrup, J. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007). (10.1074/jbc.M701345200) / J. Biol. Chem. by T Max (2007)
  12. Schroeder, S.C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000). (10.1101/gad.836300) / Genes Dev. by SC Schroeder (2000)
  13. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000). (10.1101/gad.824700) / Genes Dev. by P Komarnitsky (2000)
  14. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003). (10.1016/S1097-2765(03)00092-3) / Mol. Cell by HH Ng (2003)
  15. Krogan, N.J. et al. Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003). (10.1128/MCB.23.12.4207-4218.2003) / Mol. Cell. Biol. by NJ Krogan (2003)
  16. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005). (10.1016/j.cell.2005.10.023) / Cell by MJ Carrozza (2005)
  17. Mosley, A.L. et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 34, 168–178 (2009). (10.1016/j.molcel.2009.02.025) / Mol. Cell by AL Mosley (2009)
  18. Brès, V., Yoh, S. & Jones, K. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 20, 334–340 (2008). (10.1016/j.ceb.2008.04.008) / Curr. Opin. Cell Biol. by V Brès (2008)
  19. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009). (10.1016/j.molcel.2009.10.019) / Mol. Cell by S Buratowski (2009)
  20. Kornblihtt, A.R., De La Mata, M., Fededa, J., Munoz, M. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004). (10.1261/rna.7100104) / RNA by AR Kornblihtt (2004)
  21. Wood, A. & Shilatifard, A. Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle 5, 1066–1068 (2006). (10.4161/cc.5.10.2769) / Cell Cycle by A Wood (2006)
  22. Liu, Y. et al. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 29, 4852–4863 (2009). (10.1128/MCB.00609-09) / Mol. Cell. Biol. by Y Liu (2009)
  23. Zhou, K., Kuo, W., Fillingham, J. & Greenblatt, J. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. Sci. USA 106, 6956–6961 (2009). (10.1073/pnas.0806302106) / Proc. Natl. Acad. Sci. USA by K Zhou (2009)
  24. Chu, Y., Simic, R., Warner, M., Arndt, K. & Prelich, G. Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J. 26, 4646–4656 (2007). (10.1038/sj.emboj.7601887) / EMBO J. by Y Chu (2007)
  25. Keogh, M.C., Podolny, V. & Buratowski, S. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol. Cell. Biol. 23, 7005–7018 (2003). (10.1128/MCB.23.19.7005-7018.2003) / Mol. Cell. Biol. by MC Keogh (2003)
  26. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002). (10.1016/S0092-8674(02)00617-7) / Cell by NJ Proudfoot (2002)
  27. Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002). (10.1016/S1097-2765(02)00518-X) / Mol. Cell by DD Licatalosi (2002)
  28. Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004). (10.1016/S1097-2765(03)00492-1) / Mol. Cell by SH Ahn (2004)
  29. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001). (10.1101/gad.935901) / Genes Dev. by EJ Cho (2001)
  30. Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. & Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387–394 (2004). (10.1016/S1097-2765(04)00235-7) / Mol. Cell by S Krishnamurthy (2004)
  31. Steinmetz, E.J., Conrad, N., Brow, D. & Corden, J. RNA-binding protein Nrd1 directs poly (A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001). (10.1038/35095090) / Nature by EJ Steinmetz (2001)
  32. Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777–1779 (2007). (10.1126/science.1145989) / Science by S Egloff (2007)
  33. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005). (10.1016/j.cell.2005.08.019) / Cell by D Baillat (2005)
  34. Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007). (10.1126/science.1145977) / Science by RD Chapman (2007)
  35. Stiller, J.W., Mcconaughy, B. & Hall, B. Evolutionary complementation for polymerase II CTD function. Yeast 16, 57–64 (2000). (10.1002/(SICI)1097-0061(20000115)16:1<57::AID-YEA509>3.0.CO;2-E) / Yeast by JW Stiller (2000)
  36. Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008). (10.1016/j.tig.2008.03.008) / Trends Genet. by S Egloff (2008)
  37. Jenuwein, T. & Allis, C. Translating the histone code. Science 293, 1074–1080 (2001). (10.1126/science.1063127) / Science by T Jenuwein (2001)
  38. Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006). (10.1101/gad.1398206) / Genes Dev. by NP Gomes (2006)
  39. Medlin, J. et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24, 4154–4165 (2005). (10.1038/sj.emboj.7600876) / EMBO J. by J Medlin (2005)
  40. Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007). (10.1073/pnas.0611505104) / Proc. Natl. Acad. Sci. USA by EI Kanin (2007)
  41. Lee, K.M. et al. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol. Biol. Cell 16, 2734–2745 (2005). (10.1091/mbc.e04-11-0982) / Mol. Biol. Cell by KM Lee (2005)
  42. Serizawa, H., Conaway, J. & Conaway, R. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363, 371–374 (1993). (10.1038/363371a0) / Nature by H Serizawa (1993)
  43. Akhtar, M.S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009). (10.1016/j.molcel.2009.04.016) / Mol. Cell by MS Akhtar (2009)
  44. Kim, M., Suh, H., Cho, E. & Buratowski, S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009). (10.1074/jbc.M109.028993) / J. Biol. Chem. by M Kim (2009)
  45. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009). (10.1128/MCB.00637-09) / Mol. Cell. Biol. by K Glover-Cutter (2009)
  46. Patturajan, M., Conrad, N., Bregman, D. & Corden, J. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation. J. Biol. Chem. 274, 27823–27828 (1999). (10.1074/jbc.274.39.27823) / J. Biol. Chem. by M Patturajan (1999)
  47. Viladevall, L. et al. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009). (10.1016/j.molcel.2009.01.029) / Mol. Cell by L Viladevall (2009)
  48. Qiu, H., Hu, C. & Hinnebusch, A. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33, 752–762 (2009). (10.1016/j.molcel.2009.02.018) / Mol. Cell by H Qiu (2009)
  49. Steinmetz, E.J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735–746 (2006). (10.1016/j.molcel.2006.10.023) / Mol. Cell by EJ Steinmetz (2006)
  50. Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009). (10.1038/nature07747) / Nature by H Neil (2009)
  51. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009). (10.1038/nature07728) / Nature by Z Xu (2009)
  52. Holstege, F.C. & Young, R. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998). (10.1016/S0092-8674(00)81641-4) / Cell by FC Holstege (1998)
  53. Venters, B.J. & Pugh, B. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009). (10.1101/gr.084970.108) / Genome Res. by BJ Venters (2009)
  54. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005). (10.1016/j.chembiol.2005.04.011) / Chem. Biol. by ZA Knight (2005)
  55. Ahn, S.H., Keogh, M. & Buratowski, S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II EMBO Open. EMBO J. 28, 205–212 (2009). (10.1038/emboj.2008.280) / EMBO J. by SH Ahn (2009)
  56. Arigo, J.T., Eyler, D., Carroll, K. & Corden, J. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006). (10.1016/j.molcel.2006.07.024) / Mol. Cell by JT Arigo (2006)
  57. Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853–864 (2006). (10.1016/j.molcel.2006.07.029) / Mol. Cell by M Thiebaut (2006)
  58. Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723–734 (2006). (10.1016/j.molcel.2006.11.011) / Mol. Cell by M Kim (2006)
  59. Sheldon, K.E., Mauger, D. & Arndt, K. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation. Mol. Cell 20, 225–236 (2005). (10.1016/j.molcel.2005.08.026) / Mol. Cell by KE Sheldon (2005)
  60. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007). (10.1038/ng2117) / Nat. Genet. by W Lee (2007)
  61. Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007). (10.1073/pnas.0611505104) / Proc. Natl. Acad. Sci. USA by EI Kanin (2007)
  62. Rousseeuw, P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). (10.1016/0377-0427(87)90125-7) / J. Comput. Appl. Math. by P Rousseeuw (1987)
  63. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004). (10.1038/nature02800) / Nature by CT Harbison (2004)
  64. Ansari, A.Z., Ogirala, A. & Ptashne, M. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc. Natl. Acad. Sci. USA 102, 2346–2349 (2005). (10.1073/pnas.0409671102) / Proc. Natl. Acad. Sci. USA by AZ Ansari (2005)
Dates
Type When
Created 15 years ago (Aug. 29, 2010, 1:28 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:27 a.m.)
Indexed 1 week ago (Aug. 29, 2025, 6:20 a.m.)
Issued 15 years ago (Aug. 29, 2010)
Published 15 years ago (Aug. 29, 2010)
Published Online 15 years ago (Aug. 29, 2010)
Published Print 15 years ago (Sept. 1, 2010)
Funders 0

None

@article{Tietjen_2010, title={Chemical-genomic dissection of the CTD code}, volume={17}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.1900}, DOI={10.1038/nsmb.1900}, number={9}, journal={Nature Structural &amp; Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Tietjen, Joshua R and Zhang, David W and Rodríguez-Molina, Juan B and White, Brent E and Akhtar, Md Sohail and Heidemann, Martin and Li, Xin and Chapman, Rob D and Shokat, Kevan and Keles, Sündüz and Eick, Dirk and Ansari, Aseem Z}, year={2010}, month=aug, pages={1154–1161} }