Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Maki-Yonekura, S., Yonekura, K., & Namba, K. (2010). Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Nature Structural & Molecular Biology, 17(4), 417–422.

Authors 3
  1. Saori Maki-Yonekura (first)
  2. Koji Yonekura (additional)
  3. Keiichi Namba (additional)
References 42 Referenced 119
  1. Berg, H.C. & Anderson, R.A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973). (10.1038/245380a0) / Nature by HC Berg (1973)
  2. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974). (10.1038/249073a0) / Nature by M Silverman (1974)
  3. Kudo, S., Magariyama, Y. & Aizawa, S.-I. Abrupt changes in flagellar rotation observed by laser darkfield microscopy. Nature 346, 677–680 (1990). (10.1038/346677a0) / Nature by S Kudo (1990)
  4. Ryu, W.S., Berry, R.M. & Berg, H.C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000). (10.1038/35000233) / Nature by WS Ryu (2000)
  5. O'Brien, E.J. & Bennett, P.M. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70, 133–152 (1972). (10.1016/0022-2836(72)90168-4) / J. Mol. Biol. by EJ O'Brien (1972)
  6. Galkin, V.E. et al. Divergence of quaternary structures among bacterial flagellar filaments. Science 320, 382–385 (2008). (10.1126/science.1155307) / Science by VE Galkin (2008)
  7. Asakura, S. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1, 99–155 (1970). / Adv. Biophys. by S Asakura (1970)
  8. Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974). (10.1038/249074a0) / Nature by SH Larsen (1974)
  9. Macnab, R.M. & Ornston, M.K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977). (10.1016/S0022-2836(77)80153-8) / J. Mol. Biol. by RM Macnab (1977)
  10. Turner, L., Ryu, W.S. & Berg, H.C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000). (10.1128/JB.182.10.2793-2801.2000) / J. Bacteriol. by L Turner (2000)
  11. Kamiya, R. & Asakura, S. Helical transformations of Salmonella flagella in vitro. J. Mol. Biol. 106, 167–186 (1976). (10.1016/0022-2836(76)90306-5) / J. Mol. Biol. by R Kamiya (1976)
  12. Kamiya, R. & Asakura, S. Flagellar transformations at alkaline pH. J. Mol. Biol. 108, 513–518 (1977). (10.1016/S0022-2836(76)80133-7) / J. Mol. Biol. by R Kamiya (1977)
  13. Kamiya, R., Asakura, S., Wakabayashi, K. & Namba, K. Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J. Mol. Biol. 131, 725–742 (1979). (10.1016/0022-2836(79)90199-2) / J. Mol. Biol. by R Kamiya (1979)
  14. Calladine, C.R. Construction of bacterial flagella. Nature 225, 121–124 (1975). (10.1038/255121a0) / Nature by CR Calladine (1975)
  15. Calladine, C.R. Design requirements for the construction of bacterial flagella. J. Theor. Biol. 57, 469–489 (1976). (10.1016/0022-5193(76)90016-3) / J. Theor. Biol. by CR Calladine (1976)
  16. Calladine, C.R. Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol. 118, 457–479 (1978). (10.1016/0022-2836(78)90285-1) / J. Mol. Biol. by CR Calladine (1978)
  17. Hyman, H.C. & Trachtenberg, S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J. Mol. Biol. 220, 79–88 (1991). (10.1016/0022-2836(91)90382-G) / J. Mol. Biol. by HC Hyman (1991)
  18. Kanto, S., Okino, H., Aizawa, S.-I. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J. Mol. Biol. 219, 471–480 (1991). (10.1016/0022-2836(91)90187-B) / J. Mol. Biol. by S Kanto (1991)
  19. Kamiya, R., Asakura, S. & Yamaguchi, S. Formation of helical filaments by copolymerization of two types of 'straight' flagellins. Nature 286, 628–630 (1980). (10.1038/286628a0) / Nature by R Kamiya (1980)
  20. Mimori, Y. et al. The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87 (1995). (10.1006/jmbi.1995.0281) / J. Mol. Biol. by Y Mimori (1995)
  21. Morgan, D.G., Owen, C., Melanson, L.A. & DeRosier, D.J. Structure of bacterial flagellar filaments at 11 Å resolution: packing of the α-helices. J. Mol. Biol. 249, 88–110 (1995). (10.1006/jmbi.1995.0282) / J. Mol. Biol. by DG Morgan (1995)
  22. Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. & Namba, K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Natl. Acad. Sci. USA 93, 15108–15113 (1996). (10.1073/pnas.93.26.15108) / Proc. Natl. Acad. Sci. USA by Y Mimori-Kiyosue (1996)
  23. Mimori-Kiyosue, Y., Vonderviszt, F. & Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymorphism and polymerization. J. Mol. Biol. 270, 222–237 (1997). (10.1006/jmbi.1997.1111) / J. Mol. Biol. by Y Mimori-Kiyosue (1997)
  24. Vonderviszt, F., Aizawa, S.-I. & Namba, K. Role of the disordered terminal regions of flagellin in filament formation and stability. J. Mol. Biol. 221, 1461–1474 (1991). (10.1016/0022-2836(91)90946-4) / J. Mol. Biol. by F Vonderviszt (1991)
  25. Yamashita, I. et al. Structure and switching of bacterial flagellar filament studied by X-ray fiber diffraction. Nat. Struct. Biol. 5, 125–132 (1998). (10.1038/nsb0298-125) / Nat. Struct. Biol. by I Yamashita (1998)
  26. Hasegawa, K., Yamashita, I. & Namba, K. Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys. J. 74, 569–575 (1998). (10.1016/S0006-3495(98)77815-4) / Biophys. J. by K Hasegawa (1998)
  27. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003). (10.1038/nature01830) / Nature by K Yonekura (2003)
  28. Samatey, F.A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001). (10.1038/35066504) / Nature by FA Samatey (2001)
  29. Kitao, A. et al. Switch interactions control energy frustration and multiple flagellar filament structures. Proc. Natl. Acad. Sci. USA 103, 4894–4899 (2006). (10.1073/pnas.0510285103) / Proc. Natl. Acad. Sci. USA by A Kitao (2006)
  30. Namba, K. & Vonderviszt, F. Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30, 1–65 (1997). (10.1017/S0033583596003319) / Q. Rev. Biophys. by K Namba (1997)
  31. Yonekura, K., Maki-Yonekura, S. & Namba, K. Building the atomic model for the bacterial flagellar filament by electron cryomicroscopy and image analysis. Structure 13, 407–412 (2005). (10.1016/j.str.2005.02.003) / Structure by K Yonekura (2005)
  32. Yonekura, K., Toyoshima, C., Maki-Yonekura, S. & Namba, K. GUI programs for processing individual images in early stages of helical image reconstruction—for high-resolution structure analysis. J. Struct. Biol. 144, 184–194 (2003). (10.1016/j.jsb.2003.09.034) / J. Struct. Biol. by K Yonekura (2003)
  33. Yonekura, K. & Toyoshima, C. Structure determination of tubular crystals of membrane proteins. IV. Distortion correction and its combined application with real-space averaging and solvent flattening. Ultramicroscopy 107, 1141–1158 (2007). (10.1016/j.ultramic.2007.01.013) / Ultramicroscopy by K Yonekura (2007)
  34. Yonekura, K. & Toyoshima, C. Structure determination of tubular crystals of membrane proteins. III. Solvent flattening. Ultramicroscopy 84, 29–45 (2000). (10.1016/S0304-3991(00)00008-5) / Ultramicroscopy by K Yonekura (2000)
  35. Wakabayashi, T., Huxley, H.E., Amos, L.A. & Klug, A. Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin I complex. J. Mol. Biol. 93, 477–497 (1975). (10.1016/0022-2836(75)90241-7) / J. Mol. Biol. by T Wakabayashi (1975)
  36. Yonekura, K. & Toyoshima, C. Structure determination of tubular crystals of membrane proteins. II. Averaging of tubular crystals of different helical classes. Ultramicroscopy 84, 15–28 (2000). (10.1016/S0304-3991(00)00009-7) / Ultramicroscopy by K Yonekura (2000)
  37. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991). (10.1107/S0108767390010224) / Acta Crystallogr. A by TA Jones (1991)
  38. Wang, H. & Stubbs, G. Molecular dynamics in refinement against fiber diffraction data. Acta Crystallogr. A 49, 504–513 (1993). (10.1107/S0108767392011255) / Acta Crystallogr. A by H Wang (1993)
  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993). (10.1107/S0021889892009944) / J. Appl. Crystallogr. by RA Laskowski (1993)
  40. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991). (10.1107/S0021889891004399) / J. Appl. Crystallogr. by PJ Kraulis (1991)
  41. Merritt, E.A. & Bacon, D.J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997). (10.1016/S0076-6879(97)77028-9) / Methods Enzymol. by EA Merritt (1997)
  42. Pettersen, E.F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (10.1002/jcc.20084) / J. Comput. Chem. by EF Pettersen (2004)
Dates
Type When
Created 15 years, 5 months ago (March 14, 2010, 2:50 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:26 a.m.)
Indexed 1 month, 3 weeks ago (July 11, 2025, 6:28 a.m.)
Issued 15 years, 5 months ago (March 14, 2010)
Published 15 years, 5 months ago (March 14, 2010)
Published Online 15 years, 5 months ago (March 14, 2010)
Published Print 15 years, 5 months ago (April 1, 2010)
Funders 0

None

@article{Maki_Yonekura_2010, title={Conformational change of flagellin for polymorphic supercoiling of the flagellar filament}, volume={17}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.1774}, DOI={10.1038/nsmb.1774}, number={4}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Maki-Yonekura, Saori and Yonekura, Koji and Namba, Keiichi}, year={2010}, month=mar, pages={417–422} }