Crossref
journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
References
130
Referenced
419
-
Bashan, A. & Yonath, A. Correlating ribosome function with high-resolution structures. Trends Microbiol. 16, 326–335 (2008).
(
10.1016/j.tim.2008.05.001
) / Trends Microbiol. by A Bashan (2008) -
Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).
(
10.1016/j.cell.2008.11.016
) / Cell by F Brandt (2009) -
Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).
(
10.1126/science.289.5481.905
) / Science by N Ban (2000) -
Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).
(
10.1016/S0092-8674(01)00546-3
) / Cell by J Harms (2001) -
Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).
(
10.1126/science.289.5481.920
) / Science by P Nissen (2000) -
Voss, N.R., Gerstein, M., Steitz, T.A. & Moore, P.B. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893–906 (2006).
(
10.1016/j.jmb.2006.05.023
) / J. Mol. Biol. by NR Voss (2006) -
Picking, W.D., Picking, W.L., Odom, O.W. & Hardesty, B. Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Biochemistry 31, 2368–2375 (1992).
(
10.1021/bi00123a023
) / Biochemistry by WD Picking (1992) -
Malkin, L.I. & Rich, A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26, 329–346 (1967).
(
10.1016/0022-2836(67)90301-4
) / J. Mol. Biol. by LI Malkin (1967) -
Kosolapov, A. & Deutsch, C. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16, 405–411 (2009).
(
10.1038/nsmb.1571
) / Nat. Struct. Mol. Biol. by A Kosolapov (2009) -
Lu, J., Kobertz, W.R. & Deutsch, C. Mapping the electrostatic potential within the ribosomal exit tunnel. J. Mol. Biol. 371, 1378–1391 (2007).
(
10.1016/j.jmb.2007.06.038
) / J. Mol. Biol. by J Lu (2007) -
Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005).
(
10.1038/nsmb1021
) / Nat. Struct. Mol. Biol. by J Lu (2005) -
Tsai, C.J. et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J. Mol. Biol. 383, 281–291 (2008).
(
10.1016/j.jmb.2008.08.012
) / J. Mol. Biol. by CJ Tsai (2008) -
Crombie, T., Swaffield, J.C. & Brown, A.J.P. Protein folding within the cell is influenced by controlled rates of polypeptide elongation. J. Mol. Biol. 228, 7–12 (1992).
(
10.1016/0022-2836(92)90486-4
) / J. Mol. Biol. by T Crombie (1992) -
Komar, A.A., Lesnik, T. & Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391 (1999).
(
10.1016/S0014-5793(99)01566-5
) / FEBS Lett. by AA Komar (1999) -
Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).
(
10.1038/nsmb.1554
) / Nat. Struct. Mol. Biol. by G Zhang (2009) -
Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).
(
10.1126/science.1135308
) / Science by C Kimchi-Sarfaty (2007) -
Thanaraj, T.A. & Argos, P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci. 5, 1973–1983 (1996).
(
10.1002/pro.5560051003
) / Protein Sci. by TA Thanaraj (1996) -
Clarke, T.F., IV & Clark, P.L. Rare codons cluster. PLoS One 3, e3412 (2008).
(
10.1371/journal.pone.0003412
) / PLoS One by TF Clarke IV (2008) -
Marin, M. Folding at the rhythm of the rare codon beat. Biotechnol. J. 3, 1047–1057 (2008).
(
10.1002/biot.200800089
) / Biotechnol. J. by M Marin (2008) -
Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).
(
10.1016/j.jmb.2008.08.089
) / J. Mol. Biol. by J Lu (2008) -
Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).
(
10.1101/gad.1490207
) / Genes Dev. by S Ito-Harashima (2007) -
Dimitrova, L.N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).
(
10.1074/jbc.M808840200
) / J. Biol. Chem. by LN Dimitrova (2009) -
Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002).
(
10.1126/science.1073997
) / Science by F Gong (2002) -
Nakatogawa, H. & Ito, K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7, 185–192 (2001).
(
10.1016/S1097-2765(01)00166-6
) / Mol. Cell by H Nakatogawa (2001) -
Butkus, M.E., Prundeanu, L.B. & Oliver, D.B. Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185, 6719–6722 (2003).
(
10.1128/JB.185.22.6719-6722.2003
) / J. Bacteriol. by ME Butkus (2003) -
Woolhead, C.A., Johnson, A.E. & Bernstein, H.D. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol. Cell 22, 587–598 (2006).
(
10.1016/j.molcel.2006.05.021
) / Mol. Cell by CA Woolhead (2006) -
Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).
(
10.1016/S0092-8674(02)00649-9
) / Cell by H Nakatogawa (2002) -
Muto, H., Nakatogawa, H. & Ito, K. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22, 545–552 (2006).
(
10.1016/j.molcel.2006.03.033
) / Mol. Cell by H Muto (2006) -
Fang, P., Spevak, C.C., Wu, C. & Sachs, M.S. A nascent polypeptide domain that can regulate translation elongation. Proc. Natl. Acad. Sci. USA 101, 4059–4064 (2004).
(
10.1073/pnas.0400554101
) / Proc. Natl. Acad. Sci. USA by P Fang (2004) -
Bornemann, T., Jockel, J., Rodnina, M.V. & Wintermeyer, W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 15, 494–499 (2008).
(
10.1038/nsmb.1402
) / Nat. Struct. Mol. Biol. by T Bornemann (2008) -
Berndt, U., Oellerer, S., Zhang, Y., Johnson, A.E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. USA 106, 1398–1403 (2009).
(
10.1073/pnas.0808584106
) / Proc. Natl. Acad. Sci. USA by U Berndt (2009) -
Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).
(
10.1016/S0092-8674(04)00169-2
) / Cell by CA Woolhead (2004) -
Evans, M.S., Sander, I.M. & Clark, P.L. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo . J. Mol. Biol. 383, 683–692 (2008).
(
10.1016/j.jmb.2008.07.035
) / J. Mol. Biol. by MS Evans (2008) -
Martinez, A. et al. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831 (2008).
(
10.1002/pmic.200701191
) / Proteomics by A Martinez (2008) -
Giglione, C., Boularot, A. & Meinnel, T. Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455–1474 (2004).
(
10.1007/s00018-004-3466-8
) / Cell. Mol. Life Sci. by C Giglione (2004) -
Meinnel, T. & Giglione, C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8, 626–649 (2008).
(
10.1002/pmic.200700592
) / Proteomics by T Meinnel (2008) -
Ball, L.A. & Kaesberg, P. Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro . J. Mol. Biol. 79, 531–537 (1973).
(
10.1016/0022-2836(73)90404-X
) / J. Mol. Biol. by LA Ball (1973) -
Raue, U., Oellerer, S. & Rospert, S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282, 7809–7816 (2007).
(
10.1074/jbc.M611436200
) / J. Biol. Chem. by U Raue (2007) -
Vetro, J.A. & Chang, Y.H. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo . J. Cell. Biochem. 85, 678–688 (2002).
(
10.1002/jcb.10161
) / J. Cell. Biochem. by JA Vetro (2002) -
Zuo, S., Guo, Q., Ling, C. & Chang, Y.H. Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth. Mol. Gen. Genet. 246, 247–253 (1995).
(
10.1007/BF00294688
) / Mol. Gen. Genet. by S Zuo (1995) -
Fry, K.T. & Lamborg, M.R. Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates. J. Mol. Biol. 28, 423–433 (1967).
(
10.1016/S0022-2836(67)80091-3
) / J. Mol. Biol. by KT Fry (1967) -
Pine, M.J. Kinetics of maturation of the amino termini of the cell proteins of Escherichia coli . Biochim. Biophys. Acta 174, 359–372 (1969).
(
10.1016/0005-2787(69)90261-5
) / Biochim. Biophys. Acta by MJ Pine (1969) -
Adams, J.M. On the release of the formyl group from nascent protein. J. Mol. Biol. 33, 571–574 (1968).
(
10.1016/0022-2836(68)90307-0
) / J. Mol. Biol. by JM Adams (1968) -
Bingel-Erlenmeyer, R. et al. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452, 108–111 (2008).
(
10.1038/nature06683
) / Nature by R Bingel-Erlenmeyer (2008) -
Polevoda, B. & Sherman, F. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308, 1–11 (2003).
(
10.1016/S0006-291X(03)01316-0
) / Biochem. Biophys. Res. Commun. by B Polevoda (2003) -
Yamada, R. & Bradshaw, R.A. Rat liver polysome N α-acetyltransferase: isolation and characterization. Biochemistry 30, 1010–1016 (1991).
(
10.1021/bi00218a018
) / Biochemistry by R Yamada (1991) -
Green, R.M., Elce, J.S. & Kisilevsky, R. Acetylation of peptidyl-tRNA on rat liver polyribosomes. Can. J. Biochem. 56, 1075–1081 (1978).
(
10.1139/o78-170
) / Can. J. Biochem. by RM Green (1978) -
Pestana, A. & Pitot, H.C. Acetylation of nascent polypeptide chains on rat liver polyribosomes in vivo and in vitro . Biochemistry 14, 1404–1412 (1975).
(
10.1021/bi00678a010
) / Biochemistry by A Pestana (1975) -
Palmiter, R.D., Gagnon, J. & Walsh, K.A. Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. Proc. Natl. Acad. Sci. USA 75, 94–98 (1978).
(
10.1073/pnas.75.1.94
) / Proc. Natl. Acad. Sci. USA by RD Palmiter (1978) -
Polevoda, B., Brown, S., Cardillo, T.S., Rigby, S. & Sherman, F. Yeast Nα-terminal acetyltransferases are associated with ribosomes. J. Cell. Biochem. 103, 492–508 (2008).
(
10.1002/jcb.21418
) / J. Cell. Biochem. by B Polevoda (2008) -
Gautschi, M. et al. The yeast Nα-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403–7414 (2003).
(
10.1128/MCB.23.20.7403-7414.2003
) / Mol. Cell. Biol. by M Gautschi (2003) -
Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo . Nat. Struct. Mol. Biol. 16, 574–581 (2009).
(
10.1038/nsmb.1591
) / Nat. Struct. Mol. Biol. by FU Hartl (2009) -
Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).
(
10.1038/nature01047
) / Nature by G Kramer (2002) -
Maier, R., Eckert, B., Scholz, C., Lilie, H. & Schmid, F.X. Interaction of Trigger factor with the ribosome. J. Mol. Biol. 326, 585–592 (2003).
(
10.1016/S0022-2836(02)01427-4
) / J. Mol. Biol. by R Maier (2003) -
Kaiser, C.M. et al. Real-time observation of Trigger factor function on translating ribosomes. Nature 444, 455–460 (2006).
(
10.1038/nature05225
) / Nature by CM Kaiser (2006) -
Rutkowska, A. et al. Dynamics of Trigger factor interaction with translating ribosomes. J. Biol. Chem. 283, 4124–4132 (2008).
(
10.1074/jbc.M708294200
) / J. Biol. Chem. by A Rutkowska (2008) -
Raine, A., Lovmar, M., Wikberg, J. & Ehrenberg, M. Trigger factor binding to ribosomes with nascent peptide chains of varying lengths and sequences. J. Biol. Chem. 281, 28033–28038 (2006).
(
10.1074/jbc.M605753200
) / J. Biol. Chem. by A Raine (2006) -
Maier, R., Scholz, C. & Schmid, F.X. Dynamic association of Trigger factor with protein substrates. J. Mol. Biol. 314, 1181–1190 (2001).
(
10.1006/jmbi.2000.5192
) / J. Mol. Biol. by R Maier (2001) -
Patzelt, H. et al. Binding specificity of Escherichia coli Trigger factor. Proc. Natl. Acad. Sci. USA 98, 14244–14249 (2001).
(
10.1073/pnas.261432298
) / Proc. Natl. Acad. Sci. USA by H Patzelt (2001) -
Deuerling, E. et al. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 47, 1317–1328 (2003).
(
10.1046/j.1365-2958.2003.03370.x
) / Mol. Microbiol. by E Deuerling (2003) -
Agashe, V.R. et al. Function of Trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).
(
10.1016/S0092-8674(04)00299-5
) / Cell by VR Agashe (2004) -
Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004).
(
10.1038/nature02899
) / Nature by L Ferbitz (2004) -
Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).
(
10.1038/nature01047
) / Nature by G Kramer (2002) -
Merz, F. et al. Molecular mechanism and structure of Trigger factor bound to the translating ribosome. EMBO J. 27, 1622–1632 (2008).
(
10.1038/emboj.2008.89
) / EMBO J. by F Merz (2008) -
Schlünzen, F. et al. The binding mode of the Trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13, 1685–1694 (2005).
(
10.1016/j.str.2005.08.007
) / Structure by F Schlünzen (2005) -
Baram, D. et al. Structure of Trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA 102, 12017–12022 (2005).
(
10.1073/pnas.0505581102
) / Proc. Natl. Acad. Sci. USA by D Baram (2005) -
Hoffmann, A. et al. Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J. Biol. Chem. 281, 6539–6545 (2006).
(
10.1074/jbc.M512345200
) / J. Biol. Chem. by A Hoffmann (2006) -
Tomic, S., Johnson, A.E., Hartl, F.U. & Etchells, S.A. Exploring the capacity of Trigger factor to function as a shield for ribosome bound polypeptide chains. FEBS Lett. 580, 72–76 (2006).
(
10.1016/j.febslet.2005.11.050
) / FEBS Lett. by S Tomic (2006) -
Lakshmipathy, S.K. et al. Identification of nascent chain interaction sites on Trigger factor. J. Biol. Chem. 282, 12186–12193 (2007).
(
10.1074/jbc.M609871200
) / J. Biol. Chem. by SK Lakshmipathy (2007) -
Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F.X. Cooperation of enzymatic and chaperone functions of Trigger factor in the catalysis of protein folding. EMBO J. 16, 54–58 (1997).
(
10.1093/emboj/16.1.54
) / EMBO J. by C Scholz (1997) -
Kramer, G. et al. Functional dissection of Escherichia coli Trigger factor: unraveling the function of individual domains. J. Bacteriol. 186, 3777–3784 (2004).
(
10.1128/JB.186.12.3777-3784.2004
) / J. Bacteriol. by G Kramer (2004) - Merz, F. et al. The C-terminal domain of E. coli Trigger factor represents the central module of its chaperone activity. J. Biol. Chem. 42, 31963–31971 (2006). / J. Biol. Chem. by F Merz (2006)
-
Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).
(
10.1038/370434a0
) / Nature by B Wiedmann (1994) -
Pfund, C. et al. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981–3989 (1998).
(
10.1093/emboj/17.14.3981
) / EMBO J. by C Pfund (1998) -
Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA 99, 4209–4214 (2002).
(
10.1073/pnas.062048599
) / Proc. Natl. Acad. Sci. USA by M Gautschi (2002) -
Wegrzyn, R.D. & Deuerling, E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell. Mol. Life Sci. 62, 2727–2738 (2005).
(
10.1007/s00018-005-5292-z
) / Cell. Mol. Life Sci. by RD Wegrzyn (2005) -
Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. USA 98, 3762–3767 (2001).
(
10.1073/pnas.071057198
) / Proc. Natl. Acad. Sci. USA by M Gautschi (2001) -
Hundley, H. et al. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc. Natl. Acad. Sci. USA 99, 4203–4208 (2002).
(
10.1073/pnas.062048399
) / Proc. Natl. Acad. Sci. USA by H Hundley (2002) -
Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).
(
10.1093/emboj/17.16.4809
) / EMBO J. by W Yan (1998) -
Albanèse, V., Yam, A.Y., Baughman, J., Parnot, C. & Frydman, J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124, 75–88 (2006).
(
10.1016/j.cell.2005.11.039
) / Cell by V Albanèse (2006) -
Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E.A. The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992).
(
10.1016/0092-8674(92)90269-I
) / Cell by RJ Nelson (1992) -
Peisker, K. et al. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19, 5279–5288 (2008).
(
10.1091/mbc.e08-06-0661
) / Mol. Biol. Cell by K Peisker (2008) -
Huang, P., Gautschi, M., Walter, W., Rospert, S. & Craig, E.A. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat. Struct. Mol. Biol. 12, 497–504 (2005).
(
10.1038/nsmb942
) / Nat. Struct. Mol. Biol. by P Huang (2005) -
Conz, C. et al. Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex. J. Biol. Chem. 282, 33977–33984 (2007).
(
10.1074/jbc.M706737200
) / J. Biol. Chem. by C Conz (2007) -
Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005).
(
10.1126/science.1109247
) / Science by HA Hundley (2005) -
Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102, 10064–10069 (2005).
(
10.1073/pnas.0504400102
) / Proc. Natl. Acad. Sci. USA by H Otto (2005) -
Dragovic, Z., Shomura, Y., Tzvetkov, N., Hartl, F.U. & Bracher, A. Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol. Chem. 387, 1593–1600 (2006).
(
10.1515/BC.2006.198
) / Biol. Chem. by Z Dragovic (2006) -
Yam, A.Y., Albanese, V., Lin, H.T. & Frydman, J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J. Biol. Chem. 280, 41252–41261 (2005).
(
10.1074/jbc.M503615200
) / J. Biol. Chem. by AY Yam (2005) -
Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006).
(
10.1038/sj.emboj.7601139
) / EMBO J. by H Raviol (2006) -
Sondermann, H. et al. Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae . J. Biol. Chem. 277, 33220–33227 (2002).
(
10.1074/jbc.M204624200
) / J. Biol. Chem. by H Sondermann (2002) -
Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).
(
10.1016/j.cell.2007.08.039
) / Cell by Q Liu (2007) -
Fünfschilling, U. & Rospert, S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10, 3289–3299 (1999).
(
10.1091/mbc.10.10.3289
) / Mol. Biol. Cell by U Fünfschilling (1999) -
Rospert, S., Dubaquie, Y. & Gautschi, M. Nascent-polypeptide-associated complex. Cell. Mol. Life Sci. 59, 1632–1639 (2002).
(
10.1007/PL00012490
) / Cell. Mol. Life Sci. by S Rospert (2002) -
Spreter, T., Pech, M. & Beatrix, B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Biol. Chem. 280, 15849–15854 (2005).
(
10.1074/jbc.M500160200
) / J. Biol. Chem. by T Spreter (2005) -
Beatrix, B., Sakai, H. & Wiedmann, M. The α and β subunit of the nascent polypeptide-associated complex have distinct functions. J. Biol. Chem. 275, 37838–37845 (2000).
(
10.1074/jbc.M006368200
) / J. Biol. Chem. by B Beatrix (2000) -
Wegrzyn, R.D. et al. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 281, 2847–2857 (2006).
(
10.1074/jbc.M511420200
) / J. Biol. Chem. by RD Wegrzyn (2006) -
Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).
(
10.1038/370434a0
) / Nature by B Wiedmann (1994) -
Andersen, K.M., Semple, C.A. & Hartmann-Petersen, R. Characterisation of the nascent polypeptide-associated complex in fission yeast. Mol. Biol. Rep. 34, 275–281 (2007).
(
10.1007/s11033-006-9043-5
) / Mol. Biol. Rep. by KM Andersen (2007) -
Reimann, B. et al. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397–407 (1999).
(
10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U
) / Yeast by B Reimann (1999) -
Bloss, T.A., Witze, E.S. & Rothman, J.H. Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans . Nature 424, 1066–1071 (2003).
(
10.1038/nature01920
) / Nature by TA Bloss (2003) -
Markesich, D.C., Gajewski, K.M., Nazimiec, M.E. & Beckingham, K. bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery* . Development 127, 559–572 (2000).
(
10.1242/dev.127.3.559
) / Development by DC Markesich (2000) -
Deng, J.M. & Behringer, R.R. An insertional mutation in the BTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res. 4, 264–269 (1995).
(
10.1007/BF01969120
) / Transgenic Res. by JM Deng (1995) -
Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).
(
10.1091/mbc.11.12.4241
) / Mol. Biol. Cell by AP Gasch (2000) -
Craig, E.A., Eisenman, H.C. & Hundley, H.A. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr. Opin. Microbiol. 6, 157–162 (2003).
(
10.1016/S1369-5274(03)00030-4
) / Curr. Opin. Microbiol. by EA Craig (2003) -
Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).
(
10.1126/science.1117230
) / Science by BS Schuwirth (2005) -
Pool, M.R., Stumm, J., Fulga, T.A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002).
(
10.1126/science.1072366
) / Science by MR Pool (2002) -
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).
(
10.1016/S0092-8674(01)00541-4
) / Cell by R Beckmann (2001) -
Blau, M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 12, 1015–1016 (2005).
(
10.1038/nsmb998
) / Nat. Struct. Mol. Biol. by M Blau (2005) -
Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).
(
10.1038/nature02342
) / Nature by M Halic (2004) -
Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006).
(
10.1038/nature05182
) / Nature by C Schaffitzel (2006) -
Jia, L. et al. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447 (2003).
(
10.1093/emboj/cdg624
) / EMBO J. by L Jia (2003) -
Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).
(
10.1038/nature04133
) / Nature by K Mitra (2005) -
Keenan, R.J., Freymann, D.M., Stroud, R.M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001).
(
10.1146/annurev.biochem.70.1.755
) / Annu. Rev. Biochem. by RJ Keenan (2001) -
Skach, W.R. Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16, 606–612 (2009).
(
10.1038/nsmb.1600
) / Nat. Struct. Mol. Biol. by WR Skach (2009) -
Eisner, G., Koch, H.G., Beck, K., Brunner, J. & Muller, M. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163, 35–44 (2003).
(
10.1083/jcb.200306069
) / J. Cell Biol. by G Eisner (2003) -
Eisner, G., Moser, M., Schafer, U., Beck, K. & Muller, M. Alternate recruitment of signal recognition particle and Trigger factor to the signal sequence of a growing nascent polypeptide. J. Biol. Chem. 281, 7172–7179 (2006).
(
10.1074/jbc.M511388200
) / J. Biol. Chem. by G Eisner (2006) -
Ullers, R.S. et al. Sequence-specific interactions of nascent Escherichia coli polypeptides with Trigger factor and signal recognition particle. J. Biol. Chem. 281, 13999–14005 (2006).
(
10.1074/jbc.M600638200
) / J. Biol. Chem. by RS Ullers (2006) -
Ullers, R.S. et al. Interplay of signal recognition particle and Trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161, 679–684 (2003).
(
10.1083/jcb.200302130
) / J. Cell Biol. by RS Ullers (2003) -
Raine, A., Ivanova, N., Wikberg, J.E. & Ehrenberg, M. Simultaneous binding of Trigger factor and signal recognition particle to the E. coli ribosome. Biochimie 86, 495–500 (2004).
(
10.1016/j.biochi.2004.05.004
) / Biochimie by A Raine (2004) -
Valent, Q.A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and Trigger factor. Mol. Microbiol. 25, 53–64 (1997).
(
10.1046/j.1365-2958.1997.4431808.x
) / Mol. Microbiol. by QA Valent (1997) -
Lee, H.C. & Bernstein, H.D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98, 3471–3476 (2001).
(
10.1073/pnas.051484198
) / Proc. Natl. Acad. Sci. USA by HC Lee (2001) -
Beck, K., Wu, L.F., Brunner, J. & Muller, M. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and Trigger factor. EMBO J. 19, 134–143 (2000).
(
10.1093/emboj/19.1.134
) / EMBO J. by K Beck (2000) -
Lee, H.C. & Bernstein, H.D. Trigger factor retards protein export in Escherichia coli . J. Biol. Chem. 277, 43527–43535 (2002).
(
10.1074/jbc.M205950200
) / J. Biol. Chem. by HC Lee (2002) -
Ullers, R.S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli . Proc. Natl. Acad. Sci. USA 104, 3101–3106 (2007).
(
10.1073/pnas.0608232104
) / Proc. Natl. Acad. Sci. USA by RS Ullers (2007) -
Buskiewicz, I. et al. Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004).
(
10.1073/pnas.0402231101
) / Proc. Natl. Acad. Sci. USA by I Buskiewicz (2004) -
Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006).
(
10.1038/nature05326
) / Nature by M Halic (2006) -
Buskiewicz, I.A., Jockel, J., Rodnina, M.V. & Wintermeyer, W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 15, 44–54 (2009).
(
10.1261/rna.1285609
) / RNA by IA Buskiewicz (2009) -
Lauring, B., Sakai, H., Kreibich, G. & Wiedmann, M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92, 5411–5415 (1995).
(
10.1073/pnas.92.12.5411
) / Proc. Natl. Acad. Sci. USA by B Lauring (1995) -
Lauring, B., Kreibich, G. & Wiedmann, M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc. Natl. Acad. Sci. USA 92, 9435–9439 (1995).
(
10.1073/pnas.92.21.9435
) / Proc. Natl. Acad. Sci. USA by B Lauring (1995) -
Möller, I. et al. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc. Natl. Acad. Sci. USA 95, 13425–13430 (1998).
(
10.1073/pnas.95.23.13425
) / Proc. Natl. Acad. Sci. USA by I Möller (1998)
Dates
Type | When |
---|---|
Created | 16 years, 2 months ago (June 3, 2009, 7:05 a.m.) |
Deposited | 3 years, 4 months ago (April 19, 2022, 1:15 p.m.) |
Indexed | 4 weeks, 1 day ago (July 26, 2025, 5:24 a.m.) |
Issued | 16 years, 2 months ago (June 1, 2009) |
Published | 16 years, 2 months ago (June 1, 2009) |
Published Online | 16 years, 2 months ago (June 3, 2009) |
Published Print | 16 years, 2 months ago (June 1, 2009) |
@article{Kramer_2009, title={The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins}, volume={16}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.1614}, DOI={10.1038/nsmb.1614}, number={6}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Kramer, Günter and Boehringer, Daniel and Ban, Nenad and Bukau, Bernd}, year={2009}, month=jun, pages={589–597} }