Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Kramer, G., Boehringer, D., Ban, N., & Bukau, B. (2009). The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural & Molecular Biology, 16(6), 589–597.

Authors 4
  1. Günter Kramer (first)
  2. Daniel Boehringer (additional)
  3. Nenad Ban (additional)
  4. Bernd Bukau (additional)
References 130 Referenced 419
  1. Bashan, A. & Yonath, A. Correlating ribosome function with high-resolution structures. Trends Microbiol. 16, 326–335 (2008). (10.1016/j.tim.2008.05.001) / Trends Microbiol. by A Bashan (2008)
  2. Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009). (10.1016/j.cell.2008.11.016) / Cell by F Brandt (2009)
  3. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000). (10.1126/science.289.5481.905) / Science by N Ban (2000)
  4. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001). (10.1016/S0092-8674(01)00546-3) / Cell by J Harms (2001)
  5. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000). (10.1126/science.289.5481.920) / Science by P Nissen (2000)
  6. Voss, N.R., Gerstein, M., Steitz, T.A. & Moore, P.B. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893–906 (2006). (10.1016/j.jmb.2006.05.023) / J. Mol. Biol. by NR Voss (2006)
  7. Picking, W.D., Picking, W.L., Odom, O.W. & Hardesty, B. Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Biochemistry 31, 2368–2375 (1992). (10.1021/bi00123a023) / Biochemistry by WD Picking (1992)
  8. Malkin, L.I. & Rich, A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26, 329–346 (1967). (10.1016/0022-2836(67)90301-4) / J. Mol. Biol. by LI Malkin (1967)
  9. Kosolapov, A. & Deutsch, C. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16, 405–411 (2009). (10.1038/nsmb.1571) / Nat. Struct. Mol. Biol. by A Kosolapov (2009)
  10. Lu, J., Kobertz, W.R. & Deutsch, C. Mapping the electrostatic potential within the ribosomal exit tunnel. J. Mol. Biol. 371, 1378–1391 (2007). (10.1016/j.jmb.2007.06.038) / J. Mol. Biol. by J Lu (2007)
  11. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005). (10.1038/nsmb1021) / Nat. Struct. Mol. Biol. by J Lu (2005)
  12. Tsai, C.J. et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J. Mol. Biol. 383, 281–291 (2008). (10.1016/j.jmb.2008.08.012) / J. Mol. Biol. by CJ Tsai (2008)
  13. Crombie, T., Swaffield, J.C. & Brown, A.J.P. Protein folding within the cell is influenced by controlled rates of polypeptide elongation. J. Mol. Biol. 228, 7–12 (1992). (10.1016/0022-2836(92)90486-4) / J. Mol. Biol. by T Crombie (1992)
  14. Komar, A.A., Lesnik, T. & Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391 (1999). (10.1016/S0014-5793(99)01566-5) / FEBS Lett. by AA Komar (1999)
  15. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009). (10.1038/nsmb.1554) / Nat. Struct. Mol. Biol. by G Zhang (2009)
  16. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007). (10.1126/science.1135308) / Science by C Kimchi-Sarfaty (2007)
  17. Thanaraj, T.A. & Argos, P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci. 5, 1973–1983 (1996). (10.1002/pro.5560051003) / Protein Sci. by TA Thanaraj (1996)
  18. Clarke, T.F., IV & Clark, P.L. Rare codons cluster. PLoS One 3, e3412 (2008). (10.1371/journal.pone.0003412) / PLoS One by TF Clarke IV (2008)
  19. Marin, M. Folding at the rhythm of the rare codon beat. Biotechnol. J. 3, 1047–1057 (2008). (10.1002/biot.200800089) / Biotechnol. J. by M Marin (2008)
  20. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008). (10.1016/j.jmb.2008.08.089) / J. Mol. Biol. by J Lu (2008)
  21. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007). (10.1101/gad.1490207) / Genes Dev. by S Ito-Harashima (2007)
  22. Dimitrova, L.N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009). (10.1074/jbc.M808840200) / J. Biol. Chem. by LN Dimitrova (2009)
  23. Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002). (10.1126/science.1073997) / Science by F Gong (2002)
  24. Nakatogawa, H. & Ito, K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7, 185–192 (2001). (10.1016/S1097-2765(01)00166-6) / Mol. Cell by H Nakatogawa (2001)
  25. Butkus, M.E., Prundeanu, L.B. & Oliver, D.B. Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185, 6719–6722 (2003). (10.1128/JB.185.22.6719-6722.2003) / J. Bacteriol. by ME Butkus (2003)
  26. Woolhead, C.A., Johnson, A.E. & Bernstein, H.D. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol. Cell 22, 587–598 (2006). (10.1016/j.molcel.2006.05.021) / Mol. Cell by CA Woolhead (2006)
  27. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002). (10.1016/S0092-8674(02)00649-9) / Cell by H Nakatogawa (2002)
  28. Muto, H., Nakatogawa, H. & Ito, K. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22, 545–552 (2006). (10.1016/j.molcel.2006.03.033) / Mol. Cell by H Muto (2006)
  29. Fang, P., Spevak, C.C., Wu, C. & Sachs, M.S. A nascent polypeptide domain that can regulate translation elongation. Proc. Natl. Acad. Sci. USA 101, 4059–4064 (2004). (10.1073/pnas.0400554101) / Proc. Natl. Acad. Sci. USA by P Fang (2004)
  30. Bornemann, T., Jockel, J., Rodnina, M.V. & Wintermeyer, W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 15, 494–499 (2008). (10.1038/nsmb.1402) / Nat. Struct. Mol. Biol. by T Bornemann (2008)
  31. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A.E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. USA 106, 1398–1403 (2009). (10.1073/pnas.0808584106) / Proc. Natl. Acad. Sci. USA by U Berndt (2009)
  32. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004). (10.1016/S0092-8674(04)00169-2) / Cell by CA Woolhead (2004)
  33. Evans, M.S., Sander, I.M. & Clark, P.L. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo . J. Mol. Biol. 383, 683–692 (2008). (10.1016/j.jmb.2008.07.035) / J. Mol. Biol. by MS Evans (2008)
  34. Martinez, A. et al. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831 (2008). (10.1002/pmic.200701191) / Proteomics by A Martinez (2008)
  35. Giglione, C., Boularot, A. & Meinnel, T. Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455–1474 (2004). (10.1007/s00018-004-3466-8) / Cell. Mol. Life Sci. by C Giglione (2004)
  36. Meinnel, T. & Giglione, C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8, 626–649 (2008). (10.1002/pmic.200700592) / Proteomics by T Meinnel (2008)
  37. Ball, L.A. & Kaesberg, P. Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro . J. Mol. Biol. 79, 531–537 (1973). (10.1016/0022-2836(73)90404-X) / J. Mol. Biol. by LA Ball (1973)
  38. Raue, U., Oellerer, S. & Rospert, S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282, 7809–7816 (2007). (10.1074/jbc.M611436200) / J. Biol. Chem. by U Raue (2007)
  39. Vetro, J.A. & Chang, Y.H. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo . J. Cell. Biochem. 85, 678–688 (2002). (10.1002/jcb.10161) / J. Cell. Biochem. by JA Vetro (2002)
  40. Zuo, S., Guo, Q., Ling, C. & Chang, Y.H. Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth. Mol. Gen. Genet. 246, 247–253 (1995). (10.1007/BF00294688) / Mol. Gen. Genet. by S Zuo (1995)
  41. Fry, K.T. & Lamborg, M.R. Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates. J. Mol. Biol. 28, 423–433 (1967). (10.1016/S0022-2836(67)80091-3) / J. Mol. Biol. by KT Fry (1967)
  42. Pine, M.J. Kinetics of maturation of the amino termini of the cell proteins of Escherichia coli . Biochim. Biophys. Acta 174, 359–372 (1969). (10.1016/0005-2787(69)90261-5) / Biochim. Biophys. Acta by MJ Pine (1969)
  43. Adams, J.M. On the release of the formyl group from nascent protein. J. Mol. Biol. 33, 571–574 (1968). (10.1016/0022-2836(68)90307-0) / J. Mol. Biol. by JM Adams (1968)
  44. Bingel-Erlenmeyer, R. et al. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452, 108–111 (2008). (10.1038/nature06683) / Nature by R Bingel-Erlenmeyer (2008)
  45. Polevoda, B. & Sherman, F. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308, 1–11 (2003). (10.1016/S0006-291X(03)01316-0) / Biochem. Biophys. Res. Commun. by B Polevoda (2003)
  46. Yamada, R. & Bradshaw, R.A. Rat liver polysome N α-acetyltransferase: isolation and characterization. Biochemistry 30, 1010–1016 (1991). (10.1021/bi00218a018) / Biochemistry by R Yamada (1991)
  47. Green, R.M., Elce, J.S. & Kisilevsky, R. Acetylation of peptidyl-tRNA on rat liver polyribosomes. Can. J. Biochem. 56, 1075–1081 (1978). (10.1139/o78-170) / Can. J. Biochem. by RM Green (1978)
  48. Pestana, A. & Pitot, H.C. Acetylation of nascent polypeptide chains on rat liver polyribosomes in vivo and in vitro . Biochemistry 14, 1404–1412 (1975). (10.1021/bi00678a010) / Biochemistry by A Pestana (1975)
  49. Palmiter, R.D., Gagnon, J. & Walsh, K.A. Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. Proc. Natl. Acad. Sci. USA 75, 94–98 (1978). (10.1073/pnas.75.1.94) / Proc. Natl. Acad. Sci. USA by RD Palmiter (1978)
  50. Polevoda, B., Brown, S., Cardillo, T.S., Rigby, S. & Sherman, F. Yeast Nα-terminal acetyltransferases are associated with ribosomes. J. Cell. Biochem. 103, 492–508 (2008). (10.1002/jcb.21418) / J. Cell. Biochem. by B Polevoda (2008)
  51. Gautschi, M. et al. The yeast Nα-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403–7414 (2003). (10.1128/MCB.23.20.7403-7414.2003) / Mol. Cell. Biol. by M Gautschi (2003)
  52. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo . Nat. Struct. Mol. Biol. 16, 574–581 (2009). (10.1038/nsmb.1591) / Nat. Struct. Mol. Biol. by FU Hartl (2009)
  53. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002). (10.1038/nature01047) / Nature by G Kramer (2002)
  54. Maier, R., Eckert, B., Scholz, C., Lilie, H. & Schmid, F.X. Interaction of Trigger factor with the ribosome. J. Mol. Biol. 326, 585–592 (2003). (10.1016/S0022-2836(02)01427-4) / J. Mol. Biol. by R Maier (2003)
  55. Kaiser, C.M. et al. Real-time observation of Trigger factor function on translating ribosomes. Nature 444, 455–460 (2006). (10.1038/nature05225) / Nature by CM Kaiser (2006)
  56. Rutkowska, A. et al. Dynamics of Trigger factor interaction with translating ribosomes. J. Biol. Chem. 283, 4124–4132 (2008). (10.1074/jbc.M708294200) / J. Biol. Chem. by A Rutkowska (2008)
  57. Raine, A., Lovmar, M., Wikberg, J. & Ehrenberg, M. Trigger factor binding to ribosomes with nascent peptide chains of varying lengths and sequences. J. Biol. Chem. 281, 28033–28038 (2006). (10.1074/jbc.M605753200) / J. Biol. Chem. by A Raine (2006)
  58. Maier, R., Scholz, C. & Schmid, F.X. Dynamic association of Trigger factor with protein substrates. J. Mol. Biol. 314, 1181–1190 (2001). (10.1006/jmbi.2000.5192) / J. Mol. Biol. by R Maier (2001)
  59. Patzelt, H. et al. Binding specificity of Escherichia coli Trigger factor. Proc. Natl. Acad. Sci. USA 98, 14244–14249 (2001). (10.1073/pnas.261432298) / Proc. Natl. Acad. Sci. USA by H Patzelt (2001)
  60. Deuerling, E. et al. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 47, 1317–1328 (2003). (10.1046/j.1365-2958.2003.03370.x) / Mol. Microbiol. by E Deuerling (2003)
  61. Agashe, V.R. et al. Function of Trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004). (10.1016/S0092-8674(04)00299-5) / Cell by VR Agashe (2004)
  62. Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004). (10.1038/nature02899) / Nature by L Ferbitz (2004)
  63. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002). (10.1038/nature01047) / Nature by G Kramer (2002)
  64. Merz, F. et al. Molecular mechanism and structure of Trigger factor bound to the translating ribosome. EMBO J. 27, 1622–1632 (2008). (10.1038/emboj.2008.89) / EMBO J. by F Merz (2008)
  65. Schlünzen, F. et al. The binding mode of the Trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13, 1685–1694 (2005). (10.1016/j.str.2005.08.007) / Structure by F Schlünzen (2005)
  66. Baram, D. et al. Structure of Trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA 102, 12017–12022 (2005). (10.1073/pnas.0505581102) / Proc. Natl. Acad. Sci. USA by D Baram (2005)
  67. Hoffmann, A. et al. Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J. Biol. Chem. 281, 6539–6545 (2006). (10.1074/jbc.M512345200) / J. Biol. Chem. by A Hoffmann (2006)
  68. Tomic, S., Johnson, A.E., Hartl, F.U. & Etchells, S.A. Exploring the capacity of Trigger factor to function as a shield for ribosome bound polypeptide chains. FEBS Lett. 580, 72–76 (2006). (10.1016/j.febslet.2005.11.050) / FEBS Lett. by S Tomic (2006)
  69. Lakshmipathy, S.K. et al. Identification of nascent chain interaction sites on Trigger factor. J. Biol. Chem. 282, 12186–12193 (2007). (10.1074/jbc.M609871200) / J. Biol. Chem. by SK Lakshmipathy (2007)
  70. Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F.X. Cooperation of enzymatic and chaperone functions of Trigger factor in the catalysis of protein folding. EMBO J. 16, 54–58 (1997). (10.1093/emboj/16.1.54) / EMBO J. by C Scholz (1997)
  71. Kramer, G. et al. Functional dissection of Escherichia coli Trigger factor: unraveling the function of individual domains. J. Bacteriol. 186, 3777–3784 (2004). (10.1128/JB.186.12.3777-3784.2004) / J. Bacteriol. by G Kramer (2004)
  72. Merz, F. et al. The C-terminal domain of E. coli Trigger factor represents the central module of its chaperone activity. J. Biol. Chem. 42, 31963–31971 (2006). / J. Biol. Chem. by F Merz (2006)
  73. Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994). (10.1038/370434a0) / Nature by B Wiedmann (1994)
  74. Pfund, C. et al. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981–3989 (1998). (10.1093/emboj/17.14.3981) / EMBO J. by C Pfund (1998)
  75. Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA 99, 4209–4214 (2002). (10.1073/pnas.062048599) / Proc. Natl. Acad. Sci. USA by M Gautschi (2002)
  76. Wegrzyn, R.D. & Deuerling, E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell. Mol. Life Sci. 62, 2727–2738 (2005). (10.1007/s00018-005-5292-z) / Cell. Mol. Life Sci. by RD Wegrzyn (2005)
  77. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. USA 98, 3762–3767 (2001). (10.1073/pnas.071057198) / Proc. Natl. Acad. Sci. USA by M Gautschi (2001)
  78. Hundley, H. et al. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc. Natl. Acad. Sci. USA 99, 4203–4208 (2002). (10.1073/pnas.062048399) / Proc. Natl. Acad. Sci. USA by H Hundley (2002)
  79. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998). (10.1093/emboj/17.16.4809) / EMBO J. by W Yan (1998)
  80. Albanèse, V., Yam, A.Y., Baughman, J., Parnot, C. & Frydman, J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124, 75–88 (2006). (10.1016/j.cell.2005.11.039) / Cell by V Albanèse (2006)
  81. Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E.A. The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992). (10.1016/0092-8674(92)90269-I) / Cell by RJ Nelson (1992)
  82. Peisker, K. et al. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19, 5279–5288 (2008). (10.1091/mbc.e08-06-0661) / Mol. Biol. Cell by K Peisker (2008)
  83. Huang, P., Gautschi, M., Walter, W., Rospert, S. & Craig, E.A. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat. Struct. Mol. Biol. 12, 497–504 (2005). (10.1038/nsmb942) / Nat. Struct. Mol. Biol. by P Huang (2005)
  84. Conz, C. et al. Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex. J. Biol. Chem. 282, 33977–33984 (2007). (10.1074/jbc.M706737200) / J. Biol. Chem. by C Conz (2007)
  85. Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005). (10.1126/science.1109247) / Science by HA Hundley (2005)
  86. Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102, 10064–10069 (2005). (10.1073/pnas.0504400102) / Proc. Natl. Acad. Sci. USA by H Otto (2005)
  87. Dragovic, Z., Shomura, Y., Tzvetkov, N., Hartl, F.U. & Bracher, A. Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol. Chem. 387, 1593–1600 (2006). (10.1515/BC.2006.198) / Biol. Chem. by Z Dragovic (2006)
  88. Yam, A.Y., Albanese, V., Lin, H.T. & Frydman, J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J. Biol. Chem. 280, 41252–41261 (2005). (10.1074/jbc.M503615200) / J. Biol. Chem. by AY Yam (2005)
  89. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006). (10.1038/sj.emboj.7601139) / EMBO J. by H Raviol (2006)
  90. Sondermann, H. et al. Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae . J. Biol. Chem. 277, 33220–33227 (2002). (10.1074/jbc.M204624200) / J. Biol. Chem. by H Sondermann (2002)
  91. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007). (10.1016/j.cell.2007.08.039) / Cell by Q Liu (2007)
  92. Fünfschilling, U. & Rospert, S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10, 3289–3299 (1999). (10.1091/mbc.10.10.3289) / Mol. Biol. Cell by U Fünfschilling (1999)
  93. Rospert, S., Dubaquie, Y. & Gautschi, M. Nascent-polypeptide-associated complex. Cell. Mol. Life Sci. 59, 1632–1639 (2002). (10.1007/PL00012490) / Cell. Mol. Life Sci. by S Rospert (2002)
  94. Spreter, T., Pech, M. & Beatrix, B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Biol. Chem. 280, 15849–15854 (2005). (10.1074/jbc.M500160200) / J. Biol. Chem. by T Spreter (2005)
  95. Beatrix, B., Sakai, H. & Wiedmann, M. The α and β subunit of the nascent polypeptide-associated complex have distinct functions. J. Biol. Chem. 275, 37838–37845 (2000). (10.1074/jbc.M006368200) / J. Biol. Chem. by B Beatrix (2000)
  96. Wegrzyn, R.D. et al. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 281, 2847–2857 (2006). (10.1074/jbc.M511420200) / J. Biol. Chem. by RD Wegrzyn (2006)
  97. Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994). (10.1038/370434a0) / Nature by B Wiedmann (1994)
  98. Andersen, K.M., Semple, C.A. & Hartmann-Petersen, R. Characterisation of the nascent polypeptide-associated complex in fission yeast. Mol. Biol. Rep. 34, 275–281 (2007). (10.1007/s11033-006-9043-5) / Mol. Biol. Rep. by KM Andersen (2007)
  99. Reimann, B. et al. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397–407 (1999). (10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U) / Yeast by B Reimann (1999)
  100. Bloss, T.A., Witze, E.S. & Rothman, J.H. Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans . Nature 424, 1066–1071 (2003). (10.1038/nature01920) / Nature by TA Bloss (2003)
  101. Markesich, D.C., Gajewski, K.M., Nazimiec, M.E. & Beckingham, K. bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery* . Development 127, 559–572 (2000). (10.1242/dev.127.3.559) / Development by DC Markesich (2000)
  102. Deng, J.M. & Behringer, R.R. An insertional mutation in the BTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res. 4, 264–269 (1995). (10.1007/BF01969120) / Transgenic Res. by JM Deng (1995)
  103. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000). (10.1091/mbc.11.12.4241) / Mol. Biol. Cell by AP Gasch (2000)
  104. Craig, E.A., Eisenman, H.C. & Hundley, H.A. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr. Opin. Microbiol. 6, 157–162 (2003). (10.1016/S1369-5274(03)00030-4) / Curr. Opin. Microbiol. by EA Craig (2003)
  105. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005). (10.1126/science.1117230) / Science by BS Schuwirth (2005)
  106. Pool, M.R., Stumm, J., Fulga, T.A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002). (10.1126/science.1072366) / Science by MR Pool (2002)
  107. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001). (10.1016/S0092-8674(01)00541-4) / Cell by R Beckmann (2001)
  108. Blau, M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 12, 1015–1016 (2005). (10.1038/nsmb998) / Nat. Struct. Mol. Biol. by M Blau (2005)
  109. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004). (10.1038/nature02342) / Nature by M Halic (2004)
  110. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006). (10.1038/nature05182) / Nature by C Schaffitzel (2006)
  111. Jia, L. et al. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447 (2003). (10.1093/emboj/cdg624) / EMBO J. by L Jia (2003)
  112. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005). (10.1038/nature04133) / Nature by K Mitra (2005)
  113. Keenan, R.J., Freymann, D.M., Stroud, R.M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001). (10.1146/annurev.biochem.70.1.755) / Annu. Rev. Biochem. by RJ Keenan (2001)
  114. Skach, W.R. Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16, 606–612 (2009). (10.1038/nsmb.1600) / Nat. Struct. Mol. Biol. by WR Skach (2009)
  115. Eisner, G., Koch, H.G., Beck, K., Brunner, J. & Muller, M. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163, 35–44 (2003). (10.1083/jcb.200306069) / J. Cell Biol. by G Eisner (2003)
  116. Eisner, G., Moser, M., Schafer, U., Beck, K. & Muller, M. Alternate recruitment of signal recognition particle and Trigger factor to the signal sequence of a growing nascent polypeptide. J. Biol. Chem. 281, 7172–7179 (2006). (10.1074/jbc.M511388200) / J. Biol. Chem. by G Eisner (2006)
  117. Ullers, R.S. et al. Sequence-specific interactions of nascent Escherichia coli polypeptides with Trigger factor and signal recognition particle. J. Biol. Chem. 281, 13999–14005 (2006). (10.1074/jbc.M600638200) / J. Biol. Chem. by RS Ullers (2006)
  118. Ullers, R.S. et al. Interplay of signal recognition particle and Trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161, 679–684 (2003). (10.1083/jcb.200302130) / J. Cell Biol. by RS Ullers (2003)
  119. Raine, A., Ivanova, N., Wikberg, J.E. & Ehrenberg, M. Simultaneous binding of Trigger factor and signal recognition particle to the E. coli ribosome. Biochimie 86, 495–500 (2004). (10.1016/j.biochi.2004.05.004) / Biochimie by A Raine (2004)
  120. Valent, Q.A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and Trigger factor. Mol. Microbiol. 25, 53–64 (1997). (10.1046/j.1365-2958.1997.4431808.x) / Mol. Microbiol. by QA Valent (1997)
  121. Lee, H.C. & Bernstein, H.D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98, 3471–3476 (2001). (10.1073/pnas.051484198) / Proc. Natl. Acad. Sci. USA by HC Lee (2001)
  122. Beck, K., Wu, L.F., Brunner, J. & Muller, M. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and Trigger factor. EMBO J. 19, 134–143 (2000). (10.1093/emboj/19.1.134) / EMBO J. by K Beck (2000)
  123. Lee, H.C. & Bernstein, H.D. Trigger factor retards protein export in Escherichia coli . J. Biol. Chem. 277, 43527–43535 (2002). (10.1074/jbc.M205950200) / J. Biol. Chem. by HC Lee (2002)
  124. Ullers, R.S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli . Proc. Natl. Acad. Sci. USA 104, 3101–3106 (2007). (10.1073/pnas.0608232104) / Proc. Natl. Acad. Sci. USA by RS Ullers (2007)
  125. Buskiewicz, I. et al. Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004). (10.1073/pnas.0402231101) / Proc. Natl. Acad. Sci. USA by I Buskiewicz (2004)
  126. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006). (10.1038/nature05326) / Nature by M Halic (2006)
  127. Buskiewicz, I.A., Jockel, J., Rodnina, M.V. & Wintermeyer, W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 15, 44–54 (2009). (10.1261/rna.1285609) / RNA by IA Buskiewicz (2009)
  128. Lauring, B., Sakai, H., Kreibich, G. & Wiedmann, M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92, 5411–5415 (1995). (10.1073/pnas.92.12.5411) / Proc. Natl. Acad. Sci. USA by B Lauring (1995)
  129. Lauring, B., Kreibich, G. & Wiedmann, M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc. Natl. Acad. Sci. USA 92, 9435–9439 (1995). (10.1073/pnas.92.21.9435) / Proc. Natl. Acad. Sci. USA by B Lauring (1995)
  130. Möller, I. et al. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc. Natl. Acad. Sci. USA 95, 13425–13430 (1998). (10.1073/pnas.95.23.13425) / Proc. Natl. Acad. Sci. USA by I Möller (1998)
Dates
Type When
Created 16 years, 2 months ago (June 3, 2009, 7:05 a.m.)
Deposited 3 years, 4 months ago (April 19, 2022, 1:15 p.m.)
Indexed 4 weeks, 1 day ago (July 26, 2025, 5:24 a.m.)
Issued 16 years, 2 months ago (June 1, 2009)
Published 16 years, 2 months ago (June 1, 2009)
Published Online 16 years, 2 months ago (June 3, 2009)
Published Print 16 years, 2 months ago (June 1, 2009)
Funders 0

None

@article{Kramer_2009, title={The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins}, volume={16}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.1614}, DOI={10.1038/nsmb.1614}, number={6}, journal={Nature Structural &amp; Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Kramer, Günter and Boehringer, Daniel and Ban, Nenad and Bukau, Bernd}, year={2009}, month=jun, pages={589–597} }