Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., & Fu, X.-D. (2008). The splicing factor SC35 has an active role in transcriptional elongation. Nature Structural & Molecular Biology, 15(8), 819–826.

Authors 5
  1. Shengrong Lin (first)
  2. Gabriela Coutinho-Mansfield (additional)
  3. Dong Wang (additional)
  4. Shatakshi Pandit (additional)
  5. Xiang-Dong Fu (additional)
References 53 Referenced 318
  1. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002). (10.1038/416499a) / Nature by T Maniatis (2002)
  2. Pandit, S., Wang, D. & Fu, X.-D. Functional integration of transcriptional and RNA processing machineries. Curr. Opin. Cell Biol. 20, 260–265 (2008). (10.1016/j.ceb.2008.03.001) / Curr. Opin. Cell Biol. by S Pandit (2008)
  3. Lacadie, S.A., Tardiff, D.F., Kadener, S. & Rosbash, M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev. 20, 2055–2066 (2006). (10.1101/gad.1434706) / Genes Dev. by SA Lacadie (2006)
  4. Lacadie, S.A. & Rosbash, M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol. Cell 19, 65–75 (2005). (10.1016/j.molcel.2005.05.006) / Mol. Cell by SA Lacadie (2005)
  5. Gornemann, J., Kotovic, K.M., Hujer, K. & Neugebauer, K.M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19, 53–63 (2005). (10.1016/j.molcel.2005.05.007) / Mol. Cell by J Gornemann (2005)
  6. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006). (10.1038/nsmb1135) / Nat. Struct. Mol. Biol. by I Listerman (2006)
  7. Bres, V., Gomes, N., Pickle, L. & Jones, K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 19, 1211–1226 (2005). (10.1101/gad.1291705) / Genes Dev. by V Bres (2005)
  8. Das, R. et al. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev. 20, 1100–1109 (2006). (10.1101/gad.1397406) / Genes Dev. by R Das (2006)
  9. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003). (10.1016/j.molcel.2003.08.001) / Mol. Cell by M de la Mata (2003)
  10. Howe, K.J., Kane, C.M. & Ares, M. Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003). (10.1261/rna.5390803) / RNA by KJ Howe (2003)
  11. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005). (10.1016/j.ceb.2005.04.006) / Curr. Opin. Cell Biol. by DL Bentley (2005)
  12. Fong, N., Bird, G., Vigneron, M. & Bentley, D.L. A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3′ end processing. EMBO J. 22, 4274–4282 (2003). (10.1093/emboj/cdg396) / EMBO J. by N Fong (2003)
  13. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15, 326–331 (2003). (10.1016/S0955-0674(03)00048-6) / Curr. Opin. Cell Biol. by R Reed (2003)
  14. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002). (10.1016/S0092-8674(02)00617-7) / Cell by NJ Proudfoot (2002)
  15. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006). (10.1038/nrm1981) / Nat. Rev. Mol. Cell Biol. by A Saunders (2006)
  16. Ni, Z., Schwartz, B.E., Werner, J., Suarez, J.R. & Lis, J.T. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell 13, 55–65 (2004). (10.1016/S1097-2765(03)00526-4) / Mol. Cell by Z Ni (2004)
  17. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004). (10.1101/gad.1235904) / Genes Dev. by RJ Sims III (2004)
  18. Lis, J.T., Mason, P., Peng, J., Price, D.H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000). (10.1101/gad.14.7.792) / Genes Dev. by JT Lis (2000)
  19. O'Brien, T., Hardin, S., Greenleaf, A. & Lis, J.T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370, 75–77 (1994). (10.1038/370075a0) / Nature by T O'Brien (1994)
  20. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006). (10.1101/gad.1477006) / Genes Dev. by HP Phatnani (2006)
  21. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000). (10.1101/gad.824700) / Genes Dev. by P Komarnitsky (2000)
  22. Fong, Y.W. & Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001). (10.1038/414929a) / Nature by YW Fong (2001)
  23. Yan, D. et al. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol. Cell. Biol. 18, 5000–5009 (1998). (10.1128/MCB.18.9.5000) / Mol. Cell. Biol. by D Yan (1998)
  24. Albers, M., Diment, A., Muraru, M., Russell, C.S. & Beggs, J.D. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA 9, 138–150 (2003). (10.1261/rna.2119903) / RNA by M Albers (2003)
  25. Zhou, Z., Licklider, L.J., Gygi, S.P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002). (10.1038/nature01031) / Nature by Z Zhou (2002)
  26. Kim, H.J. et al. mRNA capping enzyme activity is coupled to an early transcription elongation. Mol. Cell. Biol. 24, 6184–6193 (2004). (10.1128/MCB.24.14.6184-6193.2004) / Mol. Cell. Biol. by HJ Kim (2004)
  27. Schroeder, S.C., Zorio, D.A., Schwer, B., Shuman, S. & Bentley, D. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol. Cell 13, 377–387 (2004). (10.1016/S1097-2765(04)00007-3) / Mol. Cell by SC Schroeder (2004)
  28. Mandal, S.S. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl. Acad. Sci. USA 101, 7572–7577 (2004). (10.1073/pnas.0401493101) / Proc. Natl. Acad. Sci. USA by SS Mandal (2004)
  29. Lin, S. & Fu, X.-D. SR Proteins and related factors in alternative splicing. in Alternative Splicing in the Postgenomic Era. vol. 623 107–122 (eds. Blencowe, B. & Graveley, G.) (Eurekah Bioscience, New York, NY, 2007). (10.1007/978-0-387-77374-2_7) / Alternative Splicing in the Postgenomic Era by S Lin (2007)
  30. Fu, X.D. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365, 82–85 (1993). (10.1038/365082a0) / Nature by XD Fu (1993)
  31. Wang, J., Takagaki, Y. & Manley, J.L. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10, 2588–2599 (1996). (10.1101/gad.10.20.2588) / Genes Dev. by J Wang (1996)
  32. Lin, S., Xiao, R., Sun, P., Xu, X. & Fu, X.D. Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol. Cell 20, 413–425 (2005). (10.1016/j.molcel.2005.09.015) / Mol. Cell by S Lin (2005)
  33. Xiao, R. et al. Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol. Cell. Biol. 27, 5393–5402 (2007). (10.1128/MCB.00288-07) / Mol. Cell. Biol. by R Xiao (2007)
  34. Ding, J.H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004). (10.1038/sj.emboj.7600054) / EMBO J. by JH Ding (2004)
  35. Lemaire, R. et al. Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2: a novel function for SR proteins. Genes Dev. 16, 594–607 (2002). (10.1101/gad.939502) / Genes Dev. by R Lemaire (2002)
  36. Wang, J., Xiao, S.H. & Manley, J.L. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12, 2222–2233 (1998). (10.1101/gad.12.14.2222) / Genes Dev. by J Wang (1998)
  37. Blanchette, M., Green, R.E., Brenner, S.E. & Rio, D.C. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev. 19, 1306–1314 (2005). (10.1101/gad.1314205) / Genes Dev. by M Blanchette (2005)
  38. Fu, X.D. & Maniatis, T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343, 437–441 (1990). (10.1038/343437a0) / Nature by XD Fu (1990)
  39. Kwon, Y.S. et al. Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters. Proc. Natl. Acad. Sci. USA 104, 4852–4857 (2007). (10.1073/pnas.0700715104) / Proc. Natl. Acad. Sci. USA by YS Kwon (2007)
  40. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000). (10.1038/47412) / Nature by BD Strahl (2000)
  41. Turner, B.M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000). (10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X) / Bioessays by BM Turner (2000)
  42. Sims, R.J. III, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003). (10.1016/j.tig.2003.09.007) / Trends Genet. by RJ Sims III (2003)
  43. Greenberg, M.E. & Bender, T.P. Identification of newly transcribed RNA. Curr. Protoc. Mol. Biol. 4, 10.1–10.7 (2007). / Curr. Protoc. Mol. Biol. by ME Greenberg (2007)
  44. Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. & Dreyfuss, G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152, 75–85 (2001). (10.1083/jcb.152.1.75) / J. Cell Biol. by L Pellizzoni (2001)
  45. Misteli, T. & Spector, D.L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3, 697–705 (1999). (10.1016/S1097-2765(01)80002-2) / Mol. Cell by T Misteli (1999)
  46. Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007). (10.1016/j.molcel.2007.05.036) / Mol. Cell by R Das (2007)
  47. Fujinaga, K. et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24, 787–795 (2004). (10.1128/MCB.24.2.787-795.2004) / Mol. Cell. Biol. by K Fujinaga (2004)
  48. Yamada, T. et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21, 227–237 (2006). (10.1016/j.molcel.2005.11.024) / Mol. Cell by T Yamada (2006)
  49. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001). (10.1101/gad.935901) / Genes Dev. by EJ Cho (2001)
  50. Champlin, D.T., Frasch, M., Saumweber, H. & Lis, J.T. Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev. 5, 1611–1621 (1991). (10.1101/gad.5.9.1611) / Genes Dev. by DT Champlin (1991)
  51. Champlin, D.T. & Lis, J.T. Distribution of B52 within a chromosomal locus depends on the level of transcription. Mol. Biol. Cell 5, 71–79 (1994). (10.1091/mbc.5.1.71) / Mol. Biol. Cell by DT Champlin (1994)
  52. Huang, Y. & Steitz, J.A. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7, 899–905 (2001). (10.1016/S1097-2765(01)00233-7) / Mol. Cell by Y Huang (2001)
  53. Weber, M.J. & Rubin, H. Uridine transport and RNA synthesis in growing and in density-inhibited animal cells. J. Cell. Physiol. 77, 157–168 (1971). (10.1002/jcp.1040770205) / J. Cell. Physiol. by MJ Weber (1971)
Dates
Type When
Created 17 years, 1 month ago (July 20, 2008, 5:08 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 3:37 a.m.)
Indexed 3 weeks, 3 days ago (Aug. 5, 2025, 8:51 a.m.)
Issued 17 years, 1 month ago (July 20, 2008)
Published 17 years, 1 month ago (July 20, 2008)
Published Online 17 years, 1 month ago (July 20, 2008)
Published Print 17 years ago (Aug. 1, 2008)
Funders 0

None

@article{Lin_2008, title={The splicing factor SC35 has an active role in transcriptional elongation}, volume={15}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsmb.1461}, DOI={10.1038/nsmb.1461}, number={8}, journal={Nature Structural &amp; Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Lin, Shengrong and Coutinho-Mansfield, Gabriela and Wang, Dong and Pandit, Shatakshi and Fu, Xiang-Dong}, year={2008}, month=jul, pages={819–826} }