Crossref journal-article
Springer Science and Business Media LLC
Nature Structural & Molecular Biology (297)
Bibliography

Fletcher, R. J., Bishop, B. E., Leon, R. P., Sclafani, R. A., Ogata, C. M., & Chen, X. S. (2003). The structure and function of MCM from archaeal M. Thermoautotrophicum. Nature Structural & Molecular Biology, 10(3), 160–167.

Authors 6
  1. Ryan J. Fletcher (first)
  2. Brooke E. Bishop (additional)
  3. Ronald P. Leon (additional)
  4. Robert A. Sclafani (additional)
  5. Craig M. Ogata (additional)
  6. Xiaojiang S. Chen (additional)
References 45 Referenced 261
  1. Diffley, J.F. & Cocker, J.H. Protein–DNA interactions at a yeast replication origin. Nature 357, 169–172 (1992). (10.1038/357169a0) / Nature by JF Diffley (1992)
  2. Walter, J. & Newport, J.W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997). (10.1126/science.275.5302.993) / Science by J Walter (1997)
  3. Aparicio, O.M., Weinstein, D.M. & Bell, S.P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69 (1997). (10.1016/S0092-8674(01)80009-X) / Cell by OM Aparicio (1997)
  4. Chong, J.P., Mahbubani, H.M., Khoo, C.Y. & Blow, J.J. Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418–421 (1995). (10.1038/375418a0) / Nature by JP Chong (1995)
  5. Kubota, Y., Mimura, S., Nishimoto, S., Takisawa, H. & Nojima, H. Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell 81, 601–609 (1995). (10.1016/0092-8674(95)90081-0) / Cell by Y Kubota (1995)
  6. Maiorano, D., Moreau, J. & Mechali, M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404, 622–625 (2000). (10.1038/35007104) / Nature by D Maiorano (2000)
  7. Tanaka, T., Knapp, D. & Nasmyth, K. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90, 649–660 (1997). (10.1016/S0092-8674(00)80526-7) / Cell by T Tanaka (1997)
  8. Yan, H., Merchant, A.M. & Tye, B.K. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7, 2149–2160 (1993). (10.1101/gad.7.11.2149) / Genes Dev. by H Yan (1993)
  9. Ishimi, Y. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508–24513 (1997). (10.1074/jbc.272.39.24508) / J. Biol. Chem. by Y Ishimi (1997)
  10. Labib, K., Tercero, J.A. & Diffley, J.F. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000). (10.1126/science.288.5471.1643) / Science by K Labib (2000)
  11. Lee, J.K. & Hurwitz, J. Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc. Natl. Acad. Sci. USA 98, 54–59 (2001). (10.1073/pnas.98.1.54) / Proc. Natl. Acad. Sci. USA by JK Lee (2001)
  12. Lei, M. & Tye, B.K. Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell. Sci. 114, 1447–1454 (2001). (10.1242/jcs.114.8.1447) / J. Cell. Sci. by M Lei (2001)
  13. Labib, K. & Diffley, J.F. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr. Opin. Genet. Dev. 11, 64–70 (2001). (10.1016/S0959-437X(00)00158-1) / Curr. Opin. Genet. Dev. by K Labib (2001)
  14. Tye, B.K. MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649–686 (1999). (10.1146/annurev.biochem.68.1.649) / Annu. Rev. Biochem. by BK Tye (1999)
  15. Patel, S.S. & Picha, K.M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000). (10.1146/annurev.biochem.69.1.651) / Annu. Rev. Biochem. by SS Patel (2000)
  16. Schwacha, A. & Bell, S.P. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cell 8, 1093–1104 (2001). (10.1016/S1097-2765(01)00389-6) / Mol. Cell by A Schwacha (2001)
  17. Kelman, Z., Lee, J.K. & Hurwitz, J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum ΔH contains DNA helicase activity. Proc. Natl. Acad. Sci. USA 96, 14783–14788 (1999). (10.1073/pnas.96.26.14783) / Proc. Natl. Acad. Sci. USA by Z Kelman (1999)
  18. Shechter, D.F., Ying, C.Y. & Gautier, J. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum ΔH minichromosome maintenance protein. J. Biol. Chem. 275, 15049–15059 (2000). (10.1074/jbc.M000398200) / J. Biol. Chem. by DF Shechter (2000)
  19. Chong, J.P., Hayashi, M.K., Simon, M.N., Xu, R.M. & Stillman, B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 97, 1530–1535 (2000). (10.1073/pnas.030539597) / Proc. Natl. Acad. Sci. USA by JP Chong (2000)
  20. Weinreich, M., Liang, C. & Stillman, B. The Cdc6p nucleotide-binding motif is required for loading MCM proteins onto chromatin. Proc. Natl. Acad. Sci. USA 96, 441–446 (1999). (10.1073/pnas.96.2.441) / Proc. Natl. Acad. Sci. USA by M Weinreich (1999)
  21. Grabowski, B. & Kelman, Z. Autophosphorylation of archaeal Cdc6 homologues is regulated by DNA. J. Bacteriol. 183, 5459–5464 (2001). (10.1128/JB.183.18.5459-5464.2001) / J. Bacteriol. by B Grabowski (2001)
  22. Simmons, D.T. SV40 large T antigen functions in DNA replication and transformation. Adv. Virus. Res. 55, 75–134 (2000). (10.1016/S0065-3527(00)55002-7) / Adv. Virus. Res. by DT Simmons (2000)
  23. Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000). (10.1016/S0092-8674(00)80871-5) / Cell by MR Singleton (2000)
  24. Kearsey, S.E. & Labib, K. MCM proteins: evolution, properties, and role in DNA replication. Biochim. Biophys. Acta 1398, 113–136 (1998). (10.1016/S0167-4781(98)00033-5) / Biochim. Biophys. Acta by SE Kearsey (1998)
  25. Hardy, C.F., Dryga, O., Seematter, S., Pahl, P.M. & Sclafani, R.A. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc. Natl. Acad. Sci. USA 94, 3151–3155 (1997). (10.1073/pnas.94.7.3151) / Proc. Natl. Acad. Sci. USA by CF Hardy (1997)
  26. Valle, M., Gruss, C., Halmer, L., Carazo, J.M. & Donate, L.E. Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol. Cell. Biol. 20, 34–41 (2000). (10.1128/MCB.20.1.34-41.2000) / Mol. Cell. Biol. by M Valle (2000)
  27. Fanning, E. & Knippers, R. Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 61, 55–85 (1992). (10.1146/annurev.bi.61.070192.000415) / Annu. Rev. Biochem. by E Fanning (1992)
  28. Edwards, M.C. et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding ORC in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33057 (2002). (10.1074/jbc.M204438200) / J. Biol. Chem. by M.C. Edwards (2002)
  29. Bochkarev, A., Bochkareva, E., Frappier, L. & Edwards, A.M. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498–4504 (1999). (10.1093/emboj/18.16.4498) / EMBO J. by A Bochkarev (1999)
  30. Poplawski, A., Grabowski, B., Long, S.E. & Kelman, Z. The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity. J. Biol. Chem. 276, 49371–49377 (2001). (10.1074/jbc.M108519200) / J. Biol. Chem. by A Poplawski (2001)
  31. Yu, X. et al. The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep. 3, 792–797 (2002). (10.1093/embo-reports/kvf160) / EMBO Rep. by X Yu (2002)
  32. Smelkova, N.V. & Borowiec, J.A. Dimerization of simian virus 40 T antigen hexamers activates T-antigen DNA helicase activity. J. Virol. 71, 8766–8773 (1997). (10.1128/JVI.71.11.8766-8773.1997) / J. Virol. by NV Smelkova (1997)
  33. Gulbis, J.M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297–306 (1996). (10.1016/S0092-8674(00)81347-1) / Cell by JM Gulbis (1996)
  34. Mauguen, Y. et al. Molecular structure of a new family of ribonucleases. Nature 297, 162–164 (1982). (10.1038/297162a0) / Nature by Y Mauguen (1982)
  35. Spiller, B., Gershenson, A., Arnold, F.H. & Stevens, R.C. A structural view of evolutionary divergence. Proc. Natl. Acad. Sci. USA 96, 12305–12310 (1999). (10.1073/pnas.96.22.12305) / Proc. Natl. Acad. Sci. USA by B Spiller (1999)
  36. Le Du, M.H., Stigbrand, T., Taussig, M.J., Menez, A. & Stura, E.A. Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. Implication for a substrate specificity. J. Biol. Chem. 276, 9158–9165 (2001). (10.1074/jbc.M009250200) / J. Biol. Chem. by MH Le Du (2001)
  37. Dalton, S. & Hopwood, B. Characterization of Cdc47p-minichromosome maintenance complexes in Saccharomyces cerevisiae: identification of Cdc45p as a subunit. Mol. Cell. Biol. 17, 5867–5875 (1997). (10.1128/MCB.17.10.5867) / Mol. Cell. Biol. by S Dalton (1997)
  38. Lei, M. et al. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365–3374 (1997). (10.1101/gad.11.24.3365) / Genes Dev. by M Lei (1997)
  39. Jones, T.A., Zou, J.Y. & Cowen, S.W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1990). (10.1107/S0108767390010224) / Acta Crystallogr. A by TA Jones (1990)
  40. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998). (10.1107/S0907444998003254) / Acta Crystallogr. D by AT Brunger (1998)
  41. Aiyar, A., Xiang, Y. & Leis, J. Site-directed mutagenesis using overlap extension PCR. Methods Mol. Biol. 57, 177–191 (1996). / Methods Mol. Biol. by A Aiyar (1996)
  42. Rothstein, R. Disruption, replacement and allele rescue: integrative DNA transformation in yeast. in Guide to Yeast Genetics and Molecular Biology (ed. Guthrie, C. & Fink, G.) 281–301 (Academic Press, San Diego; 1991). (10.1016/0076-6879(91)94022-5) / Guide to Yeast Genetics and Molecular Biology by R Rothstein (1991)
  43. Sclafani, R.A., Tecklenburg, M. & Pierce, A. The mcm5-bob1 bypass of Cdc7p/Dbf4p in DNA replication depends on both Cdk1-independent and Cdk1-dependent steps in Saccharomyces cerevisiae. Genetics 161, 47–57 (2002). (10.1093/genetics/161.1.47) / Genetics by RA Sclafani (2002)
  44. Kraulis, P.J. MOLSCRIPT — a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991). (10.1107/S0021889891004399) / J. Appl. Crystallogr. by PJ Kraulis (1991)
  45. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991). (10.1002/prot.340110407) / Proteins by A Nicholls (1991)
Dates
Type When
Created 22 years, 6 months ago (Feb. 25, 2003, 1:41 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:21 a.m.)
Indexed 1 month, 3 weeks ago (July 2, 2025, 2:31 p.m.)
Issued 22 years, 7 months ago (Jan. 27, 2003)
Published 22 years, 7 months ago (Jan. 27, 2003)
Published Online 22 years, 7 months ago (Jan. 27, 2003)
Published Print 22 years, 5 months ago (March 1, 2003)
Funders 0

None

@article{Fletcher_2003, title={The structure and function of MCM from archaeal M. Thermoautotrophicum}, volume={10}, ISSN={1545-9985}, url={http://dx.doi.org/10.1038/nsb893}, DOI={10.1038/nsb893}, number={3}, journal={Nature Structural & Molecular Biology}, publisher={Springer Science and Business Media LLC}, author={Fletcher, Ryan J. and Bishop, Brooke E. and Leon, Ronald P. and Sclafani, Robert A. and Ogata, Craig M. and Chen, Xiaojiang S.}, year={2003}, month=jan, pages={160–167} }