Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
Bibliography

Vicario-Abejón, C., Owens, D., McKay, R., & Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nature Reviews Neuroscience, 3(12), 965–974.

Authors 4
  1. Carlos Vicario-Abejón (first)
  2. David Owens (additional)
  3. Ronald McKay (additional)
  4. Menahem Segal (additional)
References 130 Referenced 200
  1. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987). (10.1126/science.3306916) / Science by R Levi-Montalcini (1987)
  2. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001). (10.1146/annurev.neuro.24.1.677) / Annu. Rev. Neurosci. by EJ Huang (2001)
  3. Lokhart, S. et al. Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. J. Neurobiol. 43, 460–476 (2000). (10.1002/(SICI)1097-4695(200003)42:4<460::AID-NEU7>3.0.CO;2-#) / J. Neurobiol. by S Lokhart (2000)
  4. González, M. et al. Disruption of TrkB-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24, 567–583 (1999). (10.1016/S0896-6273(00)81113-7) / Neuron by M González (1999)
  5. Patterson, S. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996). (10.1016/S0896-6273(00)80140-3) / Neuron by S Patterson (1996)
  6. Kafitz, K. et al. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999). (10.1038/44847) / Nature by K Kafitz (1999)
  7. Kossel, A. H., Cambridge, S. B., Wagner, U. & Bonhoeffer, T. A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation. Proc. Natl Acad. Sci. USA 98, 14702–14707 (2001). (10.1073/pnas.251326998) / Proc. Natl Acad. Sci. USA by AH Kossel (2001)
  8. Poo, M. -M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci. 2, 24–32 (2001). (10.1038/35049004) / Nature Rev. Neurosci. by M-M Poo (2001)
  9. Tanaka, T., Saito, H. & Matsuki, N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J. Neurosci. 17, 2959–2966 (1997). (10.1523/JNEUROSCI.17-09-02959.1997) / J. Neurosci. by T Tanaka (1997)
  10. Frerking, M., Malenka, R. C. & Nicoll, R. A. Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J. Neurophysiol. 80, 3383–3386 (1998). (10.1152/jn.1998.80.6.3383) / J. Neurophysiol. by M Frerking (1998)
  11. Brünig, I., Penschuck, S., Berninger, B., Benson, J. & Fritschy, J. -M. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur. J. Neurosci. 13, 1320–1328 (2001). (10.1046/j.0953-816x.2001.01506.x) / Eur. J. Neurosci. by I Brünig (2001)
  12. Henneberger, C., Jüttner, R., Rothe, T. & Grantyn, R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J. Neurophysiol. 88, 595–603 (2002). (10.1152/jn.2002.88.2.595) / J. Neurophysiol. by C Henneberger (2002)
  13. Schuman, E. M. Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109 (1999). (10.1016/S0959-4388(99)80013-0) / Curr. Opin. Neurobiol. by EM Schuman (1999)
  14. Schinder, A. F. & Poo, M. -M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645 (2000). (10.1016/S0166-2236(00)01672-6) / Trends Neurosci. by AF Schinder (2000)
  15. Lu, B. & Gottschalk, W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog. Brain Res. 128, 231–241 (2000). (10.1016/S0079-6123(00)28020-5) / Prog. Brain Res. by B Lu (2000)
  16. Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295, 1729–1734 (2002). (10.1126/science.1067766) / Science by Y Kovalchuk (2002)
  17. Yang, B., Slonimsky, J. D. & Birren, S. J. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nature Neurosci. 5, 539–545 (2002). (10.1038/nn0602-853) / Nature Neurosci. by B Yang (2002)
  18. Klein, R. Role of neurotrophins in mouse neuronal development. FASEB J. 8, 738–744 (1994). (10.1096/fasebj.8.10.8050673) / FASEB J. by R Klein (1994)
  19. Rocamora, N. et al. Expression of NGF and NT3 mRNAs in hippocampal interneurons innervated by the GABAergic septohippocampal pathway. J. Neurosci. 16, 3991–4004 (1996). (10.1523/JNEUROSCI.16-12-03991.1996) / J. Neurosci. by N Rocamora (1996)
  20. Fryer, R. et al. Developmental and mature expression of full-length and truncated trkB receptors in the rat forebrain. J. Comp. Neurol. 374, 21–40 (1996). (10.1002/(SICI)1096-9861(19961007)374:1<21::AID-CNE2>3.0.CO;2-P) / J. Comp. Neurol. by R Fryer (1996)
  21. Martinez, A. et al. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. 18, 7336–7350 (1998). The first results to indicate a role for neurotrophin signalling in the regulation of synapse number in the CNS. (10.1523/JNEUROSCI.18-18-07336.1998) / J. Neurosci. by A Martinez (1998)
  22. Drake, C. T., Milner, T. A. & Patterson, S. L. Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J. Neurosci. 19, 8009–8026 (1999). (10.1523/JNEUROSCI.19-18-08009.1999) / J. Neurosci. by CT Drake (1999)
  23. Aoki, C. et al. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J. Neurosci. Res. 59, 454–463 (2000). (10.1002/(SICI)1097-4547(20000201)59:3<454::AID-JNR21>3.0.CO;2-H) / J. Neurosci. Res. by C Aoki (2000)
  24. Tyler, W. & Pozzo-Miller, L. D. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21, 4249–4258 (2001). Evidence that BDNF increases the number of docked vesicles at hippocampal excitatory synapses and the frequency of AMPA-mediated EPSCs. (10.1523/JNEUROSCI.21-12-04249.2001) / J. Neurosci. by W Tyler (2001)
  25. Carter, A. R., Chen, C., Schwartz, P. M. & Segal, R. A. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J. Neurosci. 22, 1316–1327 (2002). (10.1523/JNEUROSCI.22-04-01316.2002) / J. Neurosci. by AR Carter (2002)
  26. Goodman, L. J. et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell. Neurosci. 7, 222–238 (1996). (10.1006/mcne.1996.0017) / Mol. Cell. Neurosci. by LJ Goodman (1996)
  27. Haubensak, W. et al. BDNF–GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. J. Cell Sci. 111, 1483–1493 (1998). (10.1242/jcs.111.11.1483) / J. Cell Sci. by W Haubensak (1998)
  28. Watson, F. L. et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nature Neurosci. 4, 981–988 (2001). (10.1038/nn720) / Nature Neurosci. by FL Watson (2001)
  29. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron 32, 801–814 (2001). (10.1016/S0896-6273(01)00526-8) / Neuron by CL Howe (2001)
  30. DiStefano, P. S. et al. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993 (1992). (10.1016/0896-6273(92)90213-W) / Neuron by PS DiStefano (1992)
  31. von Bartheld, C. S., Byers, M. R., Williams, R. & Bothwell, M. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature 379, 830–833 (1996). (10.1038/379830a0) / Nature by CS von Bartheld (1996)
  32. Altar, C. A. et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860 (1997). (10.1038/39885) / Nature by CA Altar (1997)
  33. Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423 (2001). (10.1126/science.1057415) / Science by K Kohara (2001)
  34. Hartmann, M., Heumann, R. & Lessmann, V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897 (2001). (10.1093/emboj/20.21.5887) / EMBO J. by M Hartmann (2001)
  35. Wang, X. X. et al. Mechanisms of the release of anterogradely transported neurotrophin-3 from axon terminals. J. Neurosci. 22, 931–945 (2002). (10.1523/JNEUROSCI.22-03-00931.2002) / J. Neurosci. by XX Wang (2002)
  36. Spalding, K. L. et al. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system. Mol. Cell. Neurosci. 19, 485–500 (2002). (10.1006/mcne.2001.1097) / Mol. Cell. Neurosci. by KL Spalding (2002)
  37. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19, 2069–2080 (1999). (10.1523/JNEUROSCI.19-06-02069.1999) / J. Neurosci. by SJ Mowla (1999)
  38. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–691 (1998). (10.1016/S0896-6273(00)80586-3) / Neuron by A Meyer-Franke (1998)
  39. Du, J., Feng, L., Yang, F. & Lu, B. Activity- and Ca2+-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J. Cell Biol. 150, 1423–1434 (2000). (10.1083/jcb.150.6.1423) / J. Cell Biol. by J Du (2000)
  40. Blöchl, A. & Thoenen, H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. 7, 1220–1228 (1995). (10.1111/j.1460-9568.1995.tb01112.x) / Eur. J. Neurosci. by A Blöchl (1995)
  41. Farhadi, H. F. Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J. Neurosci. 20, 4059–4068 (2000). (10.1523/JNEUROSCI.20-11-04059.2000) / J. Neurosci. by HF Farhadi (2000)
  42. Boukhaddaoui, H., Sieso, V., Scamps, F. & Valmier, J. An activity-dependent neurotrophin-3 autocrine loop regulates the phenotype of developing hippocampal pyramidal neurons before target contact. J. Neurosci. 21, 8789–8797 (2001). This study shows that NT3 regulates the differentiation of hippocampal pyramidal neurons through an autocrine loop. (10.1523/JNEUROSCI.21-22-08789.2001) / J. Neurosci. by H Boukhaddaoui (2001)
  43. Canossa, M. et al. Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc. Natl Acad. Sci. USA 94, 13279–13286 (1997). (10.1073/pnas.94.24.13279) / Proc. Natl Acad. Sci. USA by M Canossa (1997)
  44. Alderson, R. F., Curtis, R., Alterman, A. L., Lindsay, R. M. & DiStefano, P. S. Truncated TrkB mediates the endocytosis and release of BDNF and neurotrophin-4/5 by rat astrocytes and Schwann cells in vitro. Brain Res. 871, 210–222 (2000). (10.1016/S0006-8993(00)02428-8) / Brain Res. by RF Alderson (2000)
  45. Ventura, R. & Harris, K. M. Three-dimensional relationship between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999). (10.1523/JNEUROSCI.19-16-06897.1999) / J. Neurosci. by R Ventura (1999)
  46. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997). (10.1126/science.277.5332.1684) / Science by FW Pfrieger (1997)
  47. Blondel, O. et al. A glial-derived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020 (2000). (10.1523/JNEUROSCI.20-21-08012.2000) / J. Neurosci. by O Blondel (2000)
  48. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001). (10.1126/science.291.5504.657) / Science by EM Ullian (2001)
  49. Song, H. -J., Stevens, C. F. & Gage, F. H. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nature Neurosci. 5, 438–445 (2002). (10.1038/nn844) / Nature Neurosci. by H-J Song (2002)
  50. Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002). (10.1126/science.1067859) / Science by EC Beattie (2002)
  51. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001). (10.1126/science.1065057) / Science by R Lee (2001)
  52. Vaughn, J. E. Review: fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285 (1989). (10.1002/syn.890030312) / Synapse by JE Vaughn (1989)
  53. Verderio, C., Coco, S., Pravettoni, E. & Matteoli, M. Synaptogenesis in hippocampal cultures. Cell. Mol. Life Sci. 55, 1448–1462 (1999). (10.1007/s000180050384) / Cell. Mol. Life Sci. by C Verderio (1999)
  54. Craig, A. M. & Lichtman, J. W. in Synapses (eds Cowan, W. M., Südhof, T. C. & Stevens, C. F.) 571–612 (Johns Hopkins Univ. Press, 2001). / Synapses by AM Craig (2001)
  55. Ahmari, S. E. & Smith, S. J. Knowing a nascent synapse when you see it. Neuron 34, 333–336 (2002). (10.1016/S0896-6273(02)00685-2) / Neuron by SE Ahmari (2002)
  56. Vicario-Abejón, C., Collin, C., McKay, R. D. G. & Segal, M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J. Neurosci. 18, 7256–7271 (1998). The first results to show that neurotrophins are involved in the transformation of presynaptically silent synapses into functional ones. (10.1523/JNEUROSCI.18-18-07256.1998) / J. Neurosci. by C Vicario-Abejón (1998)
  57. Gasparini, S., Saviane, C., Voronini, L. L. & Cherubini, E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release?. Proc. Natl Acad. Sci. USA 97, 9741–9746 (2000). (10.1073/pnas.170032297) / Proc. Natl Acad. Sci. USA by S Gasparini (2000)
  58. Collin, C. et al. Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. Eur. J. Neurosci. 13, 1273–1282 (2001). Evidence that BDNF and NT3 increase the number of docked vesicles at hippocampal excitatory synapses, and the frequency of AMPA-mediated EPSCs. (10.1046/j.0953-816x.2001.01500.x) / Eur. J. Neurosci. by C Collin (2001)
  59. Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001). (10.1016/S0896-6273(01)00219-7) / Neuron by JJ Renger (2001)
  60. Cohen-Cory, S. & Fraser, S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 (1995). (10.1038/378192a0) / Nature by S Cohen-Cory (1995)
  61. McAllister, A. K., Katz, L. C. & Lo, D. C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997). (10.1016/S0896-6273(00)80316-5) / Neuron by AK McAllister (1997)
  62. Yacoubian, T. & Lo, D. C. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nature Neurosci. 3, 342–349 (2000). (10.1038/73911) / Nature Neurosci. by T Yacoubian (2000)
  63. Xu, B. et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245 (2000). (10.1016/S0896-6273(00)81153-8) / Neuron by B Xu (2000)
  64. Cabelli, R. J., Hohn, A. & Shatz, C. J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662–1666 (1995). (10.1126/science.7886458) / Science by RJ Cabelli (1995)
  65. Cabelli, R., Shelton, D., Segal, R. & Shatz, C. Blockade of endogenous ligands of TrkB inhibits formation of ocular dominance columns. Neuron 19, 63–76 (1997). (10.1016/S0896-6273(00)80348-7) / Neuron by R Cabelli (1997)
  66. Lein, E. S. & Shatz, C. J. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation. J. Neurosci. 20, 1470–1483 (2000). (10.1523/JNEUROSCI.20-04-01470.2000) / J. Neurosci. by ES Lein (2000)
  67. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nature Neurosci. 4, 1093–1101 (2001). A clear demonstration that BDNF promotes synapse formation in addition to axonal branching. (10.1038/nn735) / Nature Neurosci. by B Alsina (2001)
  68. Pozzo-Miller, L. D. et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 19, 4972–4983 (1999). An electrophysiological, structural and molecular analysis of the effects of targeted deletion of Bdnf on hippocampal synapses. (10.1523/JNEUROSCI.19-12-04972.1999) / J. Neurosci. by LD Pozzo-Miller (1999)
  69. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl Acad. Sci. USA 92, 8856–8860 (1995). (10.1073/pnas.92.19.8856) / Proc. Natl Acad. Sci. USA by M Korte (1995)
  70. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999). (10.1016/S0896-6273(00)80853-3) / Neuron by L Minichiello (1999)
  71. Kimura, F., Otsu, Y. & Tsumuto, T. Presynaptically silent synapses: spontaneously active terminals without stimulus-evoked release demonstrated in cortical autapses. J. Neurophysiol. 77, 2805–2815 (1997). (10.1152/jn.1997.77.5.2805) / J. Neurophysiol. by F Kimura (1997)
  72. Ma, L., Zablow, L., Kandel, E. & Siegelbaum, S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nature Neurosci. 2, 24–30 (1999). (10.1038/4525) / Nature Neurosci. by L Ma (1999)
  73. Sherwood, N. T. & Lo, D. C. Long-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment. J. Neurosci. 19, 7025–7036 (1999). (10.1523/JNEUROSCI.19-16-07025.1999) / J. Neurosci. by NT Sherwood (1999)
  74. Bolton, M. M., Pittman, A. J. & Lo, D. C. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J. Neurosci. 20, 3221–3232 (2000). A study showing that long-term BDNF treatment potentiates excitatory and inhibitory neurotransmission through different mechanisms. (10.1523/JNEUROSCI.20-09-03221.2000) / J. Neurosci. by MM Bolton (2000)
  75. Fan, G. et al. Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Nature Neurosci. 3, 350–357 (2000). (10.1038/73921) / Nature Neurosci. by G Fan (2000)
  76. Tartaglia, N. et al. Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J. Biol. Chem. 276, 37585–37593 (2001). (10.1074/jbc.M101683200) / J. Biol. Chem. by N Tartaglia (2001)
  77. Ventimiglia, R., Mather, P., Jones, B. & Lindsay, R. The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur. J. Neurosci. 7, 213–222 (1995). (10.1111/j.1460-9568.1995.tb01057.x) / Eur. J. Neurosci. by R Ventimiglia (1995)
  78. Marty, S., Berninger, B., Carroll, P. & Thoenen, H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16, 565–570 (1996). (10.1016/S0896-6273(00)80075-6) / Neuron by S Marty (1996)
  79. Cellerino, A., Pinzón-Duarte, G., Carroll, P. & Kohler, K. Brain-derived neurotrophic factor modulates the development of the dopaminergic network in the rodent retina. J. Neurosci. 18, 3351–3362 (1998). (10.1523/JNEUROSCI.18-09-03351.1998) / J. Neurosci. by A Cellerino (1998)
  80. Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999). In vivo evidence that BDNF overexpression accelerates the maturation of GABA innervation and inhibition in the mouse visual cortex. (10.1016/S0092-8674(00)81509-3) / Cell by ZJ Huang (1999)
  81. Marty, S., Wehrle, R. & Sotelo, C. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J. Neurosci. 20, 8087–8095 (2000). (10.1523/JNEUROSCI.20-21-08087.2000) / J. Neurosci. by S Marty (2000)
  82. Seil, F. J. & Drake-Baumann, R. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20, 5367–5373 (2000). (10.1523/JNEUROSCI.20-14-05367.2000) / J. Neurosci. by FJ Seil (2000)
  83. Vicario-Abejón, C., Collin, C., Tsoulfas, P. & McKay, R. D. G. Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur. J. Neurosci. 12, 677–688 (2000). (10.1046/j.1460-9568.2000.00953.x) / Eur. J. Neurosci. by C Vicario-Abejón (2000)
  84. Yamada, M. K. et al. Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J. Neurosci. 22, 7580–7585 (2002). (10.1523/JNEUROSCI.22-17-07580.2002) / J. Neurosci. by MK Yamada (2002)
  85. Bao, S., Chen, L., Qiao, X., & Thompson, R. F. Transgenic brain-derived neurotrophic factor modulates a developing cerebellar inhibitory synapse. Learn. Mem. 6, 276–283 (1999). (10.1101/lm.6.3.276) / Learn. Mem. by S Bao (1999)
  86. Rico, B., Xu, B. & Reichardt, L. F. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nature Neurosci. 5, 225–233 (2002). The first results to indicate an in vivo role for TrkB receptor signalling in the regulation of synapse number in the cerebellum. (10.1038/nn808) / Nature Neurosci. by B Rico (2002)
  87. Lyons, W. E. et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl Acad. Sci. USA 96, 15239–15244 (1999). (10.1073/pnas.96.26.15239) / Proc. Natl Acad. Sci. USA by WE Lyons (1999)
  88. Mozhayeva, M. G., Sara, Y., Liu, X. & Kavalali, E. T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002). (10.1523/JNEUROSCI.22-03-00654.2002) / J. Neurosci. by MG Mozhayeva (2002)
  89. Südhof, T. C. α-Latrotoxin, and its receptors: neurexins and CIRL/latrophilins. Annu. Rev. Neurosci. 24, 933–962 (2001). (10.1146/annurev.neuro.24.1.933) / Annu. Rev. Neurosci. by TC Südhof (2001)
  90. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997). (10.1523/JNEUROSCI.17-15-05858.1997) / J. Neurosci. by T Schikorski (1997)
  91. Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci. 4, 391–395 (2001). (10.1038/86042) / Nature Neurosci. by T Schikorski (2001)
  92. Rutherford, L. C., Nelson, S. B. & Turrigiano, G. G. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21, 521–530 (1998). Evidence that BDNF might be involved in the maintenance of the balance of cortical excitation and inhibition by scaling the quantal amplitude of AMPA-mediated inputs. (10.1016/S0896-6273(00)80563-2) / Neuron by LC Rutherford (1998)
  93. Narisawa-Saito, M., Carnahan, J., Araki, K., Yamaguchi, T. & Nawa, H. Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons. Neuroscience 88, 1009–1014 (1999). (10.1016/S0306-4522(98)00496-5) / Neuroscience by M Narisawa-Saito (1999)
  94. Narisawa-Saito, M. et al. Brain-derived neurotrophic factor regulates surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors by enhancing the N-ethylmaleimide-sensitive factor/GluR2 interaction in developing neocortical neurons. J. Biol. Chem. 277, 40901–40910 (2002). (10.1074/jbc.M202158200) / J. Biol. Chem. by M Narisawa-Saito (2002)
  95. Leslie, K. R., Nelson, S. B. & Turrigiano, G. G. Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J. Neurosci. 21, RC170 (2001). (10.1523/JNEUROSCI.21-19-j0005.2001) / J. Neurosci. by KR Leslie (2001)
  96. Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19, 10004–10013 (1999). (10.1523/JNEUROSCI.19-22-10004.1999) / J. Neurosci. by R Mohrmann (1999)
  97. Rutherford, L. C., DeWan, A., Lauer, H. M. & Turrigiano, G. G. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci. 17, 4527–4535 (1997). (10.1523/JNEUROSCI.17-12-04527.1997) / J. Neurosci. by LC Rutherford (1997)
  98. Takei, N. Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats. J. Neurochem. 68, 370–375 (1997). (10.1046/j.1471-4159.1997.68010370.x) / J. Neurochem. by N Takei (1997)
  99. Becher, A. et al. The synaptophysin–synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19, 1922–1931 (1999). (10.1523/JNEUROSCI.19-06-01922.1999) / J. Neurosci. by A Becher (1999)
  100. Crowder, K. M. et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc. Natl Acad. Sci. USA 96, 15268–15273 (1999). (10.1073/pnas.96.26.15268) / Proc. Natl Acad. Sci. USA by KM Crowder (1999)
  101. Fukuda, M. et al. Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking. Proc. Natl Acad. Sci. USA 97, 14715–14719 (2000). (10.1073/pnas.260491197) / Proc. Natl Acad. Sci. USA by M Fukuda (2000)
  102. Xu, T. & Bajjalieh, S. M. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nature Cell Biol. 3, 691–698 (2001). (10.1038/35087000) / Nature Cell Biol. by T Xu (2001)
  103. Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001). (10.1126/science.1064335) / Science by S Schoch (2001)
  104. Tarsa, L. & Goda, Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 99, 1012–1016 (2002). (10.1073/pnas.022575999) / Proc. Natl Acad. Sci. USA by L Tarsa (2002)
  105. Boulanger, L. & Poo, M. -M. Gating of BDNF-induced synaptic potentiation by cAMP. Science 284, 1982–1984 (1999). (10.1126/science.284.5422.1982) / Science by L Boulanger (1999)
  106. Pieribone, V. A. et al. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493–497 (1995). (10.1038/375493a0) / Nature by VA Pieribone (1995)
  107. Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci. 4, 1187–1193 (2001). (10.1038/nn756) / Nature Neurosci. by P Chi (2001)
  108. Chin, L. S., Ferreira, A., Kosik, K. S. & Greengard, P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc. Natl Acad. Sci. USA 92, 9230–9234 (1995). (10.1073/pnas.92.20.9230) / Proc. Natl Acad. Sci. USA by LS Chin (1995)
  109. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995). (10.1038/375488a0) / Nature by TW Rosahl (1995)
  110. Takei, Y. et al. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J. Cell Biol. 131, 1789–1800 (1995). (10.1083/jcb.131.6.1789) / J. Cell Biol. by Y Takei (1995)
  111. Jovanovic, J. N. et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I–actin interactions. Proc. Natl Acad. Sci. USA 93, 3679–3683 (1996). (10.1073/pnas.93.8.3679) / Proc. Natl Acad. Sci. USA by JN Jovanovic (1996)
  112. Jovanovic, J. N., Czernik, A. J., Fiemberg, A. A., Greengard, P. & Sihra, T. S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neurosci. 3, 323–329 (2000). This study shows that synapsin phosphorylation mediates the effect of BDNF on the promotion of neurotransmitter release. (10.1038/73888) / Nature Neurosci. by JN Jovanovic (2000)
  113. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Differential effects of NGF and BDNF on voltage-gated calcium currents in embryonic basal forebrain neurons. J. Neurosci. 15, 3084–3091 (1995). (10.1523/JNEUROSCI.15-04-03084.1995) / J. Neurosci. by ES Levine (1995)
  114. Baldelli, P., Forni, P. E. & Carbone, E. BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons. Eur. J. Neurosci. 12, 4017–4032 (2000). (10.1046/j.1460-9568.2000.00305.x) / Eur. J. Neurosci. by P Baldelli (2000)
  115. Qian, J. & Noebels, J. L. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J. Neurosci. 21, 3721–3728 (2001). (10.1523/JNEUROSCI.21-11-03721.2001) / J. Neurosci. by J Qian (2001)
  116. Minichiello, L. et al. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21, 335–345 (1998). (10.1016/S0896-6273(00)80543-7) / Neuron by L Minichiello (1998)
  117. Atwal, J. K., Massie, B., Miller, F. D. & Kaplan, D. R. The TrkB–Shc site signals neuronal survival and local axon growth via MEK and PI3-kinase. Neuron 27, 265–277 (2000). (10.1016/S0896-6273(00)00035-0) / Neuron by JK Atwal (2000)
  118. Yang, F. et al. PI-3 kinase and IP3 are both necessary and sufficient to mediate NT3-induced synaptic potentiation. Nature Neurosci. 4, 19–28 (2001). (10.1038/82858) / Nature Neurosci. by F Yang (2001)
  119. Iida, N. et al. Requirement of Ras for the activation of mitogen-activated protein kinase by calcium influx, cAMP, and neurotrophin in hippocampal neurons. J. Neurosci. 21, 6459–6466 (2001). (10.1523/JNEUROSCI.21-17-06459.2001) / J. Neurosci. by N Iida (2001)
  120. Postigo, A. et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 16, 633–645 (2002). (10.1101/gad.217902) / Genes Dev. by A Postigo (2002)
  121. Blum, R., Kafitz, K. W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel Nav1.9. Nature 419, 687–693 (2002). (10.1038/nature01085) / Nature by R Blum (2002)
  122. Kafitz, K. W., Lepier, A., Thoenen, H. & Konnerth, A. Saxitoxin-sensitivity of neurotrophin-induced rapid excitation and neurite growth. Pflugers Arch. 441, R125 (2001). / Pflugers Arch. by KW Kafitz (2001)
  123. McAllister, K. A., Katz, L. C. & Lo, D. C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057–1064 (1996). (10.1016/S0896-6273(00)80239-1) / Neuron by KA McAllister (1996)
  124. Boulanger, L. & Poo, M. -M. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nature Neurosci. 2, 346–351 (1999). (10.1038/7258) / Nature Neurosci. by L Boulanger (1999)
  125. Cohen-Cory, S. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003 (1999). (10.1523/JNEUROSCI.19-22-09996.1999) / J. Neurosci. by S Cohen-Cory (1999)
  126. Gillespie, D. C., Crair, M. C. & Stryker, M. P. Neurotrophin-4/5 alters responses and blocks the effects of monocular deprivation in cat visual cortex during critical period. J. Neurosci. 20, 9174–9186 (2000). (10.1523/JNEUROSCI.20-24-09174.2000) / J. Neurosci. by DC Gillespie (2000)
  127. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000). (10.1126/science.287.5454.864) / Science by M Verhage (2000)
  128. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA 99, 9037–9042 (2002). These two in vivo studies (references 127 and 128) show that synaptogenesis occurs in the absence of spontaneous and evoked activity. (10.1073/pnas.122623799) / Proc. Natl Acad. Sci. USA by F Varoqueaux (2002)
  129. Stellwagen, D. & Shatz, C. J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002). (10.1016/S0896-6273(02)00577-9) / Neuron by D Stellwagen (2002)
  130. Goldberg, J. L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002). (10.1016/S0896-6273(02)00602-5) / Neuron by JL Goldberg (2002)
Dates
Type When
Created 22 years, 9 months ago (Dec. 3, 2002, 4:50 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:30 a.m.)
Indexed 1 month ago (Aug. 5, 2025, 8:58 a.m.)
Issued 22 years, 9 months ago (Dec. 1, 2002)
Published 22 years, 9 months ago (Dec. 1, 2002)
Published Print 22 years, 9 months ago (Dec. 1, 2002)
Funders 0

None

@article{Vicario_Abej_n_2002, title={Role of neurotrophins in central synapse formation and stabilization}, volume={3}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn988}, DOI={10.1038/nrn988}, number={12}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Vicario-Abejón, Carlos and Owens, David and McKay, Ronald and Segal, Menahem}, year={2002}, month=dec, pages={965–974} }