Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
References
148
Referenced
437
-
Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Exp. Biol. Med. 231, 1197–1211 (2006).
(
10.1177/153537020623100705
) / Exp. Biol. Med. by A Ciechanover (2006) -
Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell. Biol. 6, 79–86 (2005).
(
10.1038/nrm1552
) / Nature Rev. Mol. Cell. Biol. by A Ciechanover (2005) -
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
(
10.1146/annurev.biochem.67.1.425
) / Annu. Rev. Biochem. by A Hershko (1998) - Schoenheimer, R. The Dynamic State of Body Constituents (Harvard Univ. Press, Cambridge, Massachusetts, 1942). / The Dynamic State of Body Constituents by R Schoenheimer (1942)
-
Simpson, M. V. The release of labeled amino acids from the proteins of rat liver slices. J. Biol. Chem. 201, 143–154 (1953).
(
10.1016/S0021-9258(18)71356-2
) / J. Biol. Chem. by MV Simpson (1953) -
Goldberg, A. L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007).
(
10.1042/BST0350012
) / Biochem. Soc. Trans. by AL Goldberg (2007) -
Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell. Dev. Biol. 19, 141–172 (2003).
(
10.1146/annurev.cellbio.19.110701.154617
) / Annu. Rev. Cell. Dev. Biol. by L Hicke (2003) -
Steward, O. & Schuman, E. M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).
(
10.1016/S0896-6273(03)00635-4
) / Neuron by O Steward (2003) -
Bingol, B. & Schuman, E. M. Synaptic protein degradation by the ubiquitin proteasome system. Curr. Opin. Neurobiol. 15, 536–541 (2005).
(
10.1016/j.conb.2005.08.016
) / Curr. Opin. Neurobiol. by B Bingol (2005) -
Yi, J. J. & Ehlers, M. D. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol. Rev. 59, 14–39 (2007).
(
10.1124/pr.59.1.4
) / Pharmacol. Rev. by JJ Yi (2007) -
DiAntonio, A. & Hicke, L. Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223–246 (2004).
(
10.1146/annurev.neuro.27.070203.144317
) / Annu. Rev. Neurosci. by A DiAntonio (2004) -
Murphey, R. K. & Godenschwege, T. A. New roles for ubiquitin in the assembly and function of neuronal circuits. Neuron 36, 5–8 (2002).
(
10.1016/S0896-6273(02)00943-1
) / Neuron by RK Murphey (2002) -
Patrick, G. N. Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system. Curr. Opin. Neurobiol. 16, 90–94 (2006).
(
10.1016/j.conb.2006.01.007
) / Curr. Opin. Neurobiol. by GN Patrick (2006) -
Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10, S10–S17 (2004).
(
10.1038/nm1066
) / Nature Med. by CA Ross (2004) -
Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).
(
10.1038/nature05291
) / Nature by DC Rubinsztein (2006) -
Nakatsukasa, K., Huyer, G., Michaelis, S. & Brodsky, J. L. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132, 101–112 (2008). This study showed that transmembrane proteins at the ER can be degraded by the proteasome, which is assisted by multiple chaperones.
(
10.1016/j.cell.2007.11.023
) / Cell by K Nakatsukasa (2008) -
Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: fusion and function. Nature Rev. Mol. Cell. Biol. 8, 622–632 (2007).
(
10.1038/nrm2217
) / Nature Rev. Mol. Cell. Biol. by JP Luzio (2007) -
Pillay, C. S., Elliott, E. & Dennison, C. Endolysosomal proteolysis and its regulation. Biochem. J. 363, 417–429 (2002).
(
10.1042/bj3630417
) / Biochem. J. by CS Pillay (2002) - Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949). / The Organization of Behavior: A Neuropsychological Theory by DO Hebb (1949)
-
Davis, H. P. & Squire, L. R. Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559 (1984).
(
10.1037/0033-2909.96.3.518
) / Psychol. Bull. by HP Davis (1984) -
Lopez-Salon, M. et al. The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur. J. Neurosci. 14, 1820–1826 (2001). This study demonstrated that the blockade of protein degradation can cause memory impairment in rodents.
(
10.1046/j.0953-816x.2001.01806.x
) / Eur. J. Neurosci. by M Lopez-Salon (2001) -
Lee, S. H. et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256 (2008).
(
10.1126/science.1150541
) / Science by SH Lee (2008) -
Hegde, A. N., Goldberg, A. L. & Schwartz, J. H. Regulatory subunits of cAMP-dependent protein kinase are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc. Natl Acad. Sci. USA 90, 7436–7440 (1993). A pioneering study on the role of protein degradation in long-term synaptic plasticity in Aplysia , focusing on the cAMP–PKA–CREB pathway.
(
10.1073/pnas.90.16.7436
) / Proc. Natl Acad. Sci. USA by AN Hegde (1993) -
Byrne, J. H. & Kandel, E. R. Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425–35 (1996).
(
10.1523/JNEUROSCI.16-02-00425.1996
) / J. Neurosci. by JH Byrne (1996) -
Chain, D. G. et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22, 147–156 (1999).
(
10.1016/S0896-6273(00)80686-8
) / Neuron by DG Chain (1999) -
Hegde, A. N. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126 (1997).
(
10.1016/S0092-8674(00)80188-9
) / Cell by AN Hegde (1997) -
Hegde, A. N. & DiAntonio, A. Ubiquitin and the synapse. Nature Rev. Neurosci. 3, 854–861 (2002).
(
10.1038/nrn961
) / Nature Rev. Neurosci. by AN Hegde (2002) -
Zhao, Y. L., Hegde, A. N. & Martin, K. C. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr. Biol. 13, 887–898 (2003).
(
10.1016/S0960-9822(03)00332-4
) / Curr. Biol. by YL Zhao (2003) -
Fonseca, R., Vabulas, R. M., Hartl, F. U., Bonhoeffer, T. & Nagerl, U. V. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52, 239–245 (2006).
(
10.1016/j.neuron.2006.08.015
) / Neuron by R Fonseca (2006) -
Karpova, A., Mikhaylova, M., Thomas, U., Knopfel, T. & Behnisch, T. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J. Neurosci. 26, 4949–4955 (2006).
(
10.1523/JNEUROSCI.4573-05.2006
) / J. Neurosci. by A Karpova (2006) -
Krug, M., Lossner, B. & Ott, T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. Bull. 13, 39–42 (1984).
(
10.1016/0361-9230(84)90005-4
) / Brain Res. Bull. by M Krug (1984) -
Willeumier, K., Pulst, S. M. & Schweizer, F. E. Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons. J. Neurosci. 26, 11333–11341 (2006).
(
10.1523/JNEUROSCI.1684-06.2006
) / J. Neurosci. by K Willeumier (2006) -
Yao, I. et al. SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130, 943–957 (2007).
(
10.1016/j.cell.2007.06.052
) / Cell by I Yao (2007) -
Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).
(
10.1146/annurev.biochem.76.060805.160029
) / Annu. Rev. Biochem. by M Sheng (2007) -
Ehlers, M. D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neurosci. 6, 231–242 (2003). A careful study on the bidirectional regulation of PSD composition by neuronal activity, highlighting the role of proteasomal degradation in synaptic remodelling.
(
10.1038/nn1013
) / Nature Neurosci. by MD Ehlers (2003) -
Ding, Q., Cecarini, V. & Keller, J. N. Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci. 30, 31–36 (2007).
(
10.1016/j.tins.2006.11.003
) / Trends Neurosci. by Q Ding (2007) -
Lowe, J., Mayer, R. J. & Landon, M. Ubiquitin in neurodegenerative diseases. Brain Pathol. 3, 55–65 (1993).
(
10.1111/j.1750-3639.1993.tb00726.x
) / Brain Pathol. by J Lowe (1993) -
Chung, K. K., Dawson, V. L. & Dawson, T. M. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci. 24, S7–S14 (2001).
(
10.1016/S0166-2236(00)01998-6
) / Trends Neurosci. by KK Chung (2001) -
Gómez-Tortosa, E., Irizarry, M. C., Gómez-Isla, T. & Hyman, B. T. Clinical and neuropathological correlates of dementia with Lewy bodies. Ann. NY Acad. Sci. 920, 9–15 (2000).
(
10.1111/j.1749-6632.2000.tb06899.x
) / Ann. NY Acad. Sci. by E Gómez-Tortosa (2000) -
Lennox, G. et al. Diffuse Lewy body disease: correlative neuropathology using anti-ubiquitin immunocytochemistry. J. Neurol. Neurosurg. Psychiatr. 52, 1236–1247 (1989).
(
10.1136/jnnp.52.11.1236
) / J. Neurol. Neurosurg. Psychiatr. by G Lennox (1989) -
Bugiani, O. The many ways to frontotemporal degeneration and beyond. Neurol. Sci. 28, 241–244 (2007).
(
10.1007/s10072-007-0829-6
) / Neurol. Sci. by O Bugiani (2007) -
Cummings, J. L. Dementia with Lewy bodies: molecular pathogenesis and implications for classification. J. Geriatr. Psychiatry Neurol. 17, 112–119 (2004).
(
10.1177/0891988704267473
) / J. Geriatr. Psychiatry Neurol. by JL Cummings (2004) -
Mayer, R. J. et al. Endosome-lysosomes, ubiquitin and neurodegeneration. Adv. Exp. Med. Biol. 389, 261–269 (1996).
(
10.1007/978-1-4613-0335-0_33
) / Adv. Exp. Med. Biol. by RJ Mayer (1996) -
Anderson, J. P. et al. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739–29752 (2006). A proteomic study of Lewy bodies from PD and DLB patients that reveal the phosphorylation state and ubiquitylation state of α-synuclein.
(
10.1074/jbc.M600933200
) / J. Biol. Chem. by JP Anderson (2006) -
Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).
(
10.1093/emboj/19.1.94
) / EMBO J. by JS Thrower (2000) -
Dahlmann, B. Role of proteasomes in disease. BMC Biochem. 8 (Suppl. 1), S3 (2007).
(
10.1186/1471-2091-8-S1-S3
) / BMC Biochem. by B Dahlmann (2007) -
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).
(
10.1126/science.292.5521.1552
) / Science by NF Bence (2001) -
Wang, J. et al. Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. J. Cell Biol. 180, 1177–1189 (2008).
(
10.1083/jcb.200709080
) / J. Cell Biol. by J Wang (2008) -
Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).
(
10.1038/nature05290
) / Nature by PT Lansbury (2006) -
Kakizuka, A. Roles of VCP in human neurodegenerative disorders. Biochem. Soc. Trans. 36, 105–108 (2008).
(
10.1042/BST0360105
) / Biochem. Soc. Trans. by A Kakizuka (2008) -
McNaught, K. S. P., Olanow, C. W., Halliwell, B., Isacson, O. & Jenner, P. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nature Rev. Neurosci. 2, 589–594 (2001).
(
10.1038/35086067
) / Nature Rev. Neurosci. by KSP McNaught (2001) -
Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).
(
10.1016/j.cell.2007.12.018
) / Cell by B Levine (2008) -
Shacka, J. J., Roth, K. A. & Zhang, J. The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy. Front. Biosci. 13, 718–736 (2008).
(
10.2741/2714
) / Front. Biosci. by JJ Shacka (2008) -
Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).
(
10.1016/S0896-6273(03)00568-3
) / Neuron by W Dauer (2003) -
Belin, A. C. & Westerlund, M. Parkinson's disease: a genetic perspective. FEBS J. 275, 1377–1383 (2008).
(
10.1111/j.1742-4658.2008.06301.x
) / FEBS J. by AC Belin (2008) -
von Coelln, R., Dawson, V. L. & Dawson, T. M. Parkin-associated Parkinson's disease. Cell Tissue Res. 318, 175–184 (2004).
(
10.1007/s00441-004-0924-4
) / Cell Tissue Res. by R von Coelln (2004) -
Pankratz, N. & Foroud, T. Genetics of Parkinson disease. Genet. Med. 9, 801–811 (2007).
(
10.1097/GIM.0b013e31815bf97c
) / Genet. Med. by N Pankratz (2007) -
Ichihara, N. et al. Axonal degeneration promotes abnormal accumulation of amyloid β-protein in ascending gracile tract of Gracile Axonal Dystrophy (GAD) mouse. Brain Res. 695, 173–178 (1995).
(
10.1016/0006-8993(95)00729-A
) / Brain Res. by N Ichihara (1995) -
Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genet. 23, 47–51 (1999).
(
10.1038/12647
) / Nature Genet. by K Saigoh (1999) -
Case, A. & Stein, R. L. Mechanistic studies of ubiquitin C-terminal hydrolase L1. Biochemistry 45, 2443–2452 (2006).
(
10.1021/bi052135t
) / Biochemistry by A Case (2006) -
Gould, E. How widespread is adult neurogenesis in mammals? Nature Rev. Neurosci. 8, 481–488 (2007).
(
10.1038/nrn2147
) / Nature Rev. Neurosci. by E Gould (2007) -
Terman, A. & Brunk, U. T. Is aging the price for memory? Biogerontology 6, 205–210 (2005). An interesting discussion on the evolutionary tradeoff between aging neurons and stable memory, and the involvement of protein degradation.
(
10.1007/s10522-005-7956-3
) / Biogerontology by A Terman (2005) -
Major, G., Larkman, A. U., Jonas, P., Sakmann, B. & Jack, J. J. B. Detailed passive cable model of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14, 4613–4638 (1994).
(
10.1523/JNEUROSCI.14-08-04613.1994
) / J. Neurosci. by G Major (1994) -
Marsh, J. L. & Thompson, L. M. Drosophila in the study of neurodegenerative disease. Neuron 52, 169–178 (2006).
(
10.1016/j.neuron.2006.09.025
) / Neuron by JL Marsh (2006) -
Semple, C. A. M. The comparative proteomics of ubiquitination in mouse. Genome Res. 13, 1389–1394 (2003).
(
10.1101/gr.980303
) / Genome Res. by CAM Semple (2003) -
Ardley, H. C. & Robinson, P. A. E3 ubiquitin ligases. Essays Biochem. 41, 15–30 (2005).
(
10.1042/bse0410015
) / Essays Biochem. by HC Ardley (2005) -
Kaiser, P. & Huang, L. Global approaches to understanding ubiquitination. Genome Biol. 6, 2331–2338 (2005).
(
10.1186/gb-2005-6-10-233
) / Genome Biol. by P Kaiser (2005) -
Moore, D. J. Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans. 34, 749–753 (2006).
(
10.1042/BST0340749
) / Biochem. Soc. Trans. by DJ Moore (2006) -
Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006).
(
10.1016/j.molcel.2006.01.020
) / Mol. Cell by CL Brooks (2006) -
Ding, M., Chao, D., Wang, G. & Shen, K. Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science 317, 947–951 (2007).
(
10.1126/science.1145727
) / Science by M Ding (2007) -
Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).
(
10.1016/S0896-6273(00)80596-6
) / Neuron by YH Jiang (1998) -
Dindot, S. V., Antalffy, B. A., Bhattacharjee, M. B. & Beaudet, A. L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 111–118 (2008).
(
10.1093/hmg/ddm288
) / Hum. Mol. Genet. by SV Dindot (2008) -
Lalande, M. & Calciano, M. A. Molecular epigenetics of Angelman syndrome. Cell. Mol. Life Sci. 64, 947–960 (2007).
(
10.1007/s00018-007-6460-0
) / Cell. Mol. Life Sci. by M Lalande (2007) -
Zenker, M. et al. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nature Genet. 37, 1345–1350 (2005).
(
10.1038/ng1681
) / Nature Genet. by M Zenker (2005) -
Ganesh, S., Puri, R., Singh, S., Mittal, S. & Dubey, D. Recent advances in the molecular basis of Lafora's progressive myoclonus epilepsy. J. Hum. Genet. 51, 1–8 (2006).
(
10.1007/s10038-005-0321-1
) / J. Hum. Genet. by S Ganesh (2006) -
Tarpey, P. S. et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am. J. Hum. Genet. 80, 345–352 (2007).
(
10.1086/511134
) / Am. J. Hum. Genet. by PS Tarpey (2007) -
Field, M. et al. Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. Am. J. Hum. Genet. 81, 367–374 (2007).
(
10.1086/520677
) / Am. J. Hum. Genet. by M Field (2007) -
Froyen, G. et al. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am. J. Hum. Genet. 82, 432–443 (2008).
(
10.1016/j.ajhg.2007.11.002
) / Am. J. Hum. Genet. by G Froyen (2008) -
Olzmann, J. A. et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 178, 1025–1038 (2007).
(
10.1083/jcb.200611128
) / J. Cell Biol. by JA Olzmann (2007) -
Smith, W. W. et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl Acad. Sci. USA 102, 18676–18681 (2005).
(
10.1073/pnas.0508052102
) / Proc. Natl Acad. Sci. USA by WW Smith (2005) -
Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301–306 (2003).
(
10.1038/sj.embor.embor764
) / EMBO Rep. by E Sakata (2003) -
Dächsel, J. C. et al. Parkin interacts with the proteasome subunit α4. FEBS Lett. 579, 3913–3919 (2005).
(
10.1016/j.febslet.2005.06.003
) / FEBS Lett. by JC Dächsel (2005) -
Wang, X. R. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553–3565 (2007). The first proteomic characterization of affinity-purified proteasomes from mammalian cells.
(
10.1021/bi061994u
) / Biochemistry by XR Wang (2007) -
Wang, X. R. & Huang, L. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell. Proteomics 7, 46–57 (2008).
(
10.1074/mcp.M700261-MCP200
) / Mol. Cell. Proteomics by XR Wang (2008) -
Henn, I. H., Gostner, J. M., Lackner, P., Tatzelt, J. & Winklhofer, K. F. Pathogenic mutations inactivate parkin by distinct mechanisms. J. Neurochem. 92, 114–122 (2005).
(
10.1111/j.1471-4159.2004.02854.x
) / J. Neurochem. by IH Henn (2005) -
Mouatt-Prigent, A. et al. Ultrastructural localization of parkin in the rat brainstem, thalamus and basal ganglia. J. Neural Transm. 111, 1209–1218 (2004).
(
10.1007/s00702-004-0144-9
) / J. Neural Transm. by A Mouatt-Prigent (2004) -
Kim, J. H., Park, K. C., Chung, S. S., Bang, O. & Chung, C. H. Deubiquitinating enzymes as cellular regulators. J. Biochem. 134, 9–18 (2003).
(
10.1093/jb/mvg107
) / J. Biochem. by JH Kim (2003) -
Koulich, E., Li, X. & DeMartino, G. N. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell. 19, 1072–1082 (2008).
(
10.1091/mbc.e07-10-1040
) / Mol. Biol. Cell. by E Koulich (2008) -
Anderson, C. et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724–731 (2005).
(
10.1111/j.1471-4159.2005.03409.x
) / J. Neurochem. by C Anderson (2005) -
Wilson, S. M. et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nature Genet. 32, 420–425 (2002).
(
10.1038/ng1006
) / Nature Genet. by SM Wilson (2002) -
Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. & Lansbury, P. T. Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209–218 (2002).
(
10.1016/S0092-8674(02)01012-7
) / Cell by Y Liu (2002) -
Dueñas, A. M., Goold, R. & Giunti, P. Molecular pathogenesis of spinocerebellar ataxias. Brain 129, 1357–1370 (2006).
(
10.1093/brain/awl081
) / Brain by AM Dueñas (2006) -
Wang, Q. Y., Li, L. Y. & Ye, Y. H. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J. Cell Biol. 174, 963–971 (2006).
(
10.1083/jcb.200605100
) / J. Cell Biol. by QY Wang (2006) -
Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005).
(
10.1038/ncb0805-766
) / Nature Cell Biol. by B Meusser (2005) -
Weihl, C. C., Dalal, S., Pestronk, A. & Hanson, P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 15, 189–199 (2006).
(
10.1093/hmg/ddi426
) / Hum. Mol. Genet. by CC Weihl (2006) -
Neumann, M. et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J. Neuropathol. Exp. Neurol. 66, 152–157 (2007).
(
10.1097/nen.0b013e31803020b9
) / J. Neuropathol. Exp. Neurol. by M Neumann (2007) -
Halawani, D. & Latterich, M. p97: the cell's molecular purgatory? Mol. Cell. 22, 713–717 (2006).
(
10.1016/j.molcel.2006.06.003
) / Mol. Cell. by D Halawani (2006) -
Dreveny, I. et al. p97 and close encounters of every kind: a brief review. Biochem. Soc. Trans. 32, 715–720 (2004).
(
10.1042/BST0320715
) / Biochem. Soc. Trans. by I Dreveny (2004) -
Yeung, H. O. et al. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans. 36, 62–67 (2008).
(
10.1042/BST0360062
) / Biochem. Soc. Trans. by HO Yeung (2008) -
Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci. 6, 11–22 (2005).
(
10.1038/nrn1587
) / Nature Rev. Neurosci. by PJ Muchowski (2005) -
Arndt, V., Rogon, C. & Hohfeld, J. To be, or not to be—molecular chaperones in protein degradation. Cell. Mol. Life Sci. 64, 2525–2541 (2007).
(
10.1007/s00018-007-7188-6
) / Cell. Mol. Life Sci. by V Arndt (2007) -
Hartmann-Petersen, R., Seeger, M. & Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26–31 (2003).
(
10.1016/S0968-0004(02)00002-6
) / Trends Biochem. Sci. by R Hartmann-Petersen (2003) -
Madura, K. Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem. Sci. 29, 637–640 (2004).
(
10.1016/j.tibs.2004.10.008
) / Trends Biochem. Sci. by K Madura (2004) -
Hartmann-Petersen, R. & Gordon, C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin. Cell Dev. Biol. 15, 247–259 (2004).
(
10.1016/j.semcdb.2003.12.006
) / Semin. Cell Dev. Biol. by R Hartmann-Petersen (2004) -
Bingol, B. & Schuman, E. M. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441, 1144–1148 (2006). This study demonstrated the rapid translocation of proteasomes into dendritic spines on KCl-induced depolarization.
(
10.1038/nature04769
) / Nature by B Bingol (2006) -
Guo, L. & Wang, Y. Glutamate stimulates glutamate receptor interacting protein 1 degradation by ubiquitin-proteasome system to regulate surface expression of GluR2. Neuroscience 145, 100–109 (2007).
(
10.1016/j.neuroscience.2006.11.042
) / Neuroscience by L Guo (2007) -
Bingol, B. & Schuman, E. M. A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis. Neuropharmacology 47, 755–763 (2004).
(
10.1016/j.neuropharm.2004.07.028
) / Neuropharmacology by B Bingol (2004) -
Colledge, M. et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595–607 (2003).
(
10.1016/S0896-6273(03)00687-1
) / Neuron by M Colledge (2003) -
Li, K. W. et al. Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol. Chem. 279, 987–1002 (2004).
(
10.1074/jbc.M303116200
) / J. Biol. Chem. by KW Li (2004) -
Schmidt, M., Hanna, J., Elsasser, S. & Finley, D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol. Chem. 386, 725–737 (2005).
(
10.1515/BC.2005.085
) / Biol. Chem. by M Schmidt (2005) -
Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).
(
10.1091/mbc.11.10.3425
) / Mol. Biol. Cell by R Verma (2000) -
Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).
(
10.1016/S0092-8674(03)00974-7
) / Cell by F Zhang (2003) -
Glickman, M. H. & Raveh, D. Proteasome plasticity. FEBS Lett. 579, 3214–3223 (2005).
(
10.1016/j.febslet.2005.04.048
) / FEBS Lett. by MH Glickman (2005) -
Dahlmann, B. Proteasomes. Essays Biochem. 41, 31–48 (2005).
(
10.1042/bse0410031
) / Essays Biochem. by B Dahlmann (2005) -
Rechsteiner, M. & Hill, C. P. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 15, 27–33 (2005).
(
10.1016/j.tcb.2004.11.003
) / Trends Cell Biol. by M Rechsteiner (2005) -
Tanahashi, N. et al. Hybrid proteasomes: induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275, 14336–14345 (2000). This study demonstrated the existence of hybrid proteasomes and used extensive immunoprecipitation reactions to quantify proteasome subtypes in HeLa cells.
(
10.1074/jbc.275.19.14336
) / J. Biol. Chem. by N Tanahashi (2000) -
Shibatani, T. et al. Global organization and function of mammalian cytosolic proteasome pools: implications for PA28 and 19S regulatory complexes. Mol. Biol. Cell 17, 4962–4971 (2006).
(
10.1091/mbc.e06-04-0311
) / Mol. Biol. Cell by T Shibatani (2006) -
Li, X. T. et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGγ proteasome. Cell 124, 381–392 (2006).
(
10.1016/j.cell.2005.11.037
) / Cell by XT Li (2006) -
Shringarpure, R., Grune, T. & Davies, K. J. A. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell. Mol. Life Sci. 58, 1442–1450 (2001).
(
10.1007/PL00000787
) / Cell. Mol. Life Sci. by R Shringarpure (2001) -
Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B. & Tanaka, K. Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem. Biophys. Res. Commun. 277, 348–354 (2000).
(
10.1006/bbrc.2000.3676
) / Biochem. Biophys. Res. Commun. by C Noda (2000) -
Pratt, G. & Rechsteiner, M. Proteasomes cleave at multiple sites within polyglutamine tracts: activation by PA28γ(K188E). J. Biol. Chem. 283, 12919–12925 (2008). This study showed that PA28 has the potential to facilitate the proteasomal degradation of polyQ aggregates.
(
10.1074/jbc.M709347200
) / J. Biol. Chem. by G Pratt (2008) -
Minami, Y. et al. A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding. J. Biol. Chem. 275, 9055–9061 (2000).
(
10.1074/jbc.275.12.9055
) / J. Biol. Chem. by Y Minami (2000) -
Poppek, D. & Grune, T. Proteasomal defense of oxidative protein modifications. Antioxid. Redox Signal. 8, 173–184 (2006).
(
10.1089/ars.2006.8.173
) / Antioxid. Redox Signal. by D Poppek (2006) -
Burbea, M., Dreier, L., Dittman, J. S., Grunwald, M. E. & Kaplan, J. M. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35, 107–120 (2002).
(
10.1016/S0896-6273(02)00749-3
) / Neuron by M Burbea (2002) -
Rezvani, K., Teng, Y., Shim, D. & De Biasi, M. Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J. Neurosci. 27, 10508–10519 (2007).
(
10.1523/JNEUROSCI.3353-07.2007
) / J. Neurosci. by K Rezvani (2007) -
Kato, A., Rouach, N., Nicoll, R. A. & Bredt, D. S. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc. Natl Acad. Sci. USA 102, 5600–5605 (2005).
(
10.1073/pnas.0501769102
) / Proc. Natl Acad. Sci. USA by A Kato (2005) -
Patrick, G. N., Bingol, B., Weld, H. A. & Schuman, E. M. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13, 2073–2081 (2003).
(
10.1016/j.cub.2003.10.028
) / Curr. Biol. by GN Patrick (2003) -
Racz, B., Blanpied, T. A., Ehlers, M. D. & Weinberg, R. J. Lateral organization of endocytic machinery in dendritic spines. Nature Neurosci. 7, 917–918 (2004).
(
10.1038/nn1303
) / Nature Neurosci. by B Racz (2004) -
Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).
(
10.1016/S0896-6273(00)00129-X
) / Neuron by MD Ehlers (2000) -
Lee, S. H., Simonetta, A. & Sheng, M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43, 221–236 (2004).
(
10.1016/j.neuron.2004.06.015
) / Neuron by SH Lee (2004) -
Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell. Dev. Biol. 23, 613–643 (2007).
(
10.1146/annurev.cellbio.23.090506.123516
) / Annu. Rev. Cell. Dev. Biol. by JD Shepherd (2007) -
Parton, R. G., Simons, K. & Dotti, C. G. Axonal and dendritic endocytic pathways in cultured neurons. J. Cell Biol. 119, 123–137 (1992). An informative study on endocytic and lysosomal pathways in axons and dendrites that used multiple techniques, including real-time imaging and electron microscopy.
(
10.1083/jcb.119.1.123
) / J. Cell Biol. by RG Parton (1992) - Walkley, S. U. in Neurobiology of Disease (ed. Gilman, S.) 1–18 (Elsevier, Burlington, 2007). / Neurobiology of Disease by SU Walkley (2007)
-
Walkley, S. U. Cellular pathology of lysosomal storage disorders. Brain Pathol. 8, 175–193 (1998).
(
10.1111/j.1750-3639.1998.tb00144.x
) / Brain Pathol. by SU Walkley (1998) -
Settembre, C., Fraldi, A., Rubinsztein, D. C. & Ballabio, A. Lysosomal storage diseases as disorders of autophagy. Autophagy 4, 113–114 (2008).
(
10.4161/auto.5227
) / Autophagy by C Settembre (2008) -
Holzbaur, E. L. F. Motor neurons rely on motor proteins. Trends Cell Biol. 14, 233–240 (2004).
(
10.1016/j.tcb.2004.03.009
) / Trends Cell Biol. by ELF Holzbaur (2004) -
Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).
(
10.1038/35022604
) / Nature by I Nishino (2000) -
Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).
(
10.1016/j.molcel.2007.11.019
) / Mol. Cell by T Hunter (2007) -
Pak, D. T. & Sheng, M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 302, 1368–1373 (2003).
(
10.1126/science.1082475
) / Science by DT Pak (2003) -
Neutzner, A., Youle, R. J. & Karbowski, M. Outer mitochondrial membrane protein degradation by the proteasome. Novartis Found. Symp. 287, 4–14 (2007).
(
10.1002/9780470725207.ch2
) / Novartis Found. Symp. by A Neutzner (2007) -
Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O. & Klionsky, D. J. Potential therapeutic applications of autophagy. Nature Rev. Drug Discov. 6, 304–312 (2007).
(
10.1038/nrd2272
) / Nature Rev. Drug Discov. by DC Rubinsztein (2007) -
Tanaka, M. et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Med. 10, 148–154 (2004).
(
10.1038/nm985
) / Nature Med. by M Tanaka (2004) -
Kuhlbrodt, K., Mouysset, J. & Hoppe, T. Orchestra for assembly and fate of polyubiquitin chains. Essays Biochem. 41, 1–14 (2005).
(
10.1042/bse0410001
) / Essays Biochem. by K Kuhlbrodt (2005) -
Peng, J. M. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21, 921–926 (2003). This study used mass spectrometry to demonstrate that all seven lysines on the ubiquitin can be used for polyubiquitin chain extension.
(
10.1038/nbt849
) / Nature Biotechnol. by JM Peng (2003) -
Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).
(
10.1126/science.1127085
) / Science by D Mukhopadhyay (2007) -
Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell. Biol. 5, 317–323 (2004).
(
10.1038/nrm1360
) / Nature Rev. Mol. Cell. Biol. by J Gruenberg (2004) -
Nixon, R. A. & Cataldo, A. M. The endosomal-lysosomal system of neurons: new roles. Trends Neurosci. 18, 489–496 (1995).
(
10.1016/0166-2236(95)92772-I
) / Trends Neurosci. by RA Nixon (1995) -
Dice, J. F. Chaperone-mediated autophagy. Autophagy 3, 295–299 (2007).
(
10.4161/auto.4144
) / Autophagy by JF Dice (2007)
Dates
Type | When |
---|---|
Created | 16 years, 10 months ago (Oct. 20, 2008, 5:14 a.m.) |
Deposited | 1 year, 6 months ago (March 1, 2024, 5:53 p.m.) |
Indexed | 4 minutes ago (Sept. 2, 2025, 4:56 p.m.) |
Issued | 16 years, 10 months ago (Nov. 1, 2008) |
Published | 16 years, 10 months ago (Nov. 1, 2008) |
Published Print | 16 years, 10 months ago (Nov. 1, 2008) |
@article{Tai_2008, title={Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction}, volume={9}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn2499}, DOI={10.1038/nrn2499}, number={11}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Tai, Hwan-Ching and Schuman, Erin M.}, year={2008}, month=nov, pages={826–838} }