Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
References
104
Referenced
245
-
Reichel, W. The biology of aging. J. Am. Geriatr. Soc. 14, 431–436 (1966).
(
10.1111/j.1532-5415.1966.tb03069.x
) / J. Am. Geriatr. Soc. by W Reichel (1966) -
Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet. 8, 835–844 (2007).
(
10.1038/nrg2188
) / Nature Rev. Genet. by NA Bishop (2007) -
Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008).
(
10.1146/annurev.biochem.77.061206.171059
) / Annu. Rev. Biochem. by W Mair (2008) -
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
(
10.1038/366461a0
) / Nature by C Kenyon (1993) -
Giannakou, M. E. & Partridge, L. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem. Sci. 32, 180–188 (2007).
(
10.1016/j.tibs.2007.02.007
) / Trends Biochem. Sci. by ME Giannakou (2007) -
Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).
(
10.1126/science.1057987
) / Science by M Tatar (2001) -
Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003). This study established that the longevity and stress-resistance effects of reduced IIS are conserved from invertebrates to mammals.
(
10.1038/nature01298
) / Nature by M Holzenberger (2003) -
Russell, S. J. & Kahn, C. R. Endocrine regulation of ageing. Nature Rev. Mol. Cell Biol. 8, 681–691 (2007).
(
10.1038/nrm2234
) / Nature Rev. Mol. Cell Biol. by SJ Russell (2007) -
Taguchi, A., Wartschow, L. M. & White, M. F. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369–372 (2007).
(
10.1126/science.1142179
) / Science by A Taguchi (2007) -
Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).
(
10.1126/science.1077780
) / Science by A Dillin (2002) -
Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003).
(
10.1038/ng1056
) / Nature Genet. by SS Lee (2003) -
Taguchi, A. & White, M. F. Insulin-like signaling, nutrient homeostasis, and life span. Annu. Rev. Physiol. 70, 191–212 (2008).
(
10.1146/annurev.physiol.70.113006.100533
) / Annu. Rev. Physiol. by A Taguchi (2008) -
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).
(
10.1126/science.1141448
) / Science by WE Balch (2008) -
Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).
(
10.1126/science.1080418
) / Science by H Aguilaniu (2003) -
Hebert, D. N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).
(
10.1152/physrev.00050.2006
) / Physiol. Rev. by DN Hebert (2007) -
Gidalevitz, T., Ben-Zvi, A., Ho, K. H., Brignull, H. R. & Morimoto, R. I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006). In this article the authors reported that the expression of one aggregation-prone polyQ protein can destabilize the genome and lead to the aggregation of other proteins.
(
10.1126/science.1124514
) / Science by T Gidalevitz (2006) -
Kopito, R. R. & Ron, D. Conformational disease. Nature Cell Biol. 2, E207–E209 (2000).
(
10.1038/35041139
) / Nature Cell Biol. by RR Kopito (2000) -
Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).
(
10.1038/nature02264
) / Nature by DJ Selkoe (2003) -
Bates, G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361, 1642–1644 (2003).
(
10.1016/S0140-6736(03)13304-1
) / Lancet by G Bates (2003) -
Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).
(
10.1146/annurev.neuro.26.010302.081142
) / Annu. Rev. Neurosci. by B Caughey (2003) -
Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid b-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).
(
10.1038/nrm2101
) / Nature Rev. Mol. Cell Biol. by C Haass (2007) -
Forloni, G. Neurotoxicity of beta-amyloid and prion peptides. Curr. Opin. Neurol. 9, 492–500 (1996).
(
10.1097/00019052-199612000-00017
) / Curr. Opin. Neurol. by G Forloni (1996) -
Kim, S. J. & Linden, D. J. Ubiquitous plasticity and memory storage. Neuron 56, 582–592 (2007).
(
10.1016/j.neuron.2007.10.030
) / Neuron by SJ Kim (2007) -
Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med. 22 Jun 2008 (doi:10.1038/nm1782).
(
10.1038/nm1782
) / Nature Medicine by Ganesh M Shankar (2008) -
Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. & Selkoe, D. J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. 572, 477–492 (2006).
(
10.1113/jphysiol.2005.103754
) / J. Physiol. by M Townsend (2006) -
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).
(
10.1038/nature02998
) / Nature by M Arrasate (2004) -
Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887–897 (2006). Along with reference 28, this work indicated that chaperones, which are known to disrupt protein aggregates, switch to actively create aggregates of high molecular mass when the concentration of the aggregating protein is high. These papers thus established the idea that active aggregation can be protective.
(
10.1016/j.molcel.2006.08.017
) / Mol. Cell by C Behrends (2006) -
Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).
(
10.1126/science.1098007
) / Science by J Shorter (2004) -
Amaducci, L. & Tesco, G. Aging as a major risk for degenerative diseases of the central nervous system. Curr. Opin. Neurol. 7, 283–286 (1994).
(
10.1097/00019052-199408000-00001
) / Curr. Opin. Neurol. by L Amaducci (1994) -
Brignull, H. R., Morley, J. F. & Morimoto, R. I. The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging. Adv. Exp. Med. Biol. 594, 167–189 (2007).
(
10.1007/978-0-387-39975-1_15
) / Adv. Exp. Med. Biol. by HR Brignull (2007) -
Jankowsky, J. L. et al. Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. Curr. Neurol. Neurosci. Rep. 2, 457–464 (2002).
(
10.1007/s11910-002-0073-7
) / Curr. Neurol. Neurosci. Rep. by JL Jankowsky (2002) -
Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).
(
10.1126/science.1124646
) / Science by E Cohen (2006) -
Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003). This paper showed that HSF-1 is crucial for enabling reduced IIS to extend lifespan.
(
10.1126/science.1083701
) / Science by AL Hsu (2003) -
Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002). This seminal study indicated that the minimal number of polyQ repeats that is needed to enable aggregation declines with age. It also showed that a reduction in IIS protects worms from polyQ aggregation.
(
10.1073/pnas.152161099
) / Proc. Natl Acad. Sci. USA by JF Morley (2002) -
Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).
(
10.1126/science.277.5328.942
) / Science by KD Kimura (1997) -
Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 (1996).
(
10.1038/382536a0
) / Nature by JZ Morris (1996) -
Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).
(
10.1038/19328
) / Nature by GJ Kops (1999) -
Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).
(
10.1101/gad.12.16.2488
) / Genes Dev. by S Paradis (1998) -
Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2, 887–893 (1998).
(
10.1016/S1097-2765(00)80303-2
) / Mol. Cell by S Ogg (1998) -
Henderson, S. T. & Johnson, T. E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11, 1975–1980 (2001).
(
10.1016/S0960-9822(01)00594-2
) / Curr. Biol. by ST Henderson (2001) -
Lee, R. Y., Hench, J. & Ruvkun, G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11, 1950–1957 (2001).
(
10.1016/S0960-9822(01)00595-4
) / Curr. Biol. by RY Lee (2001) -
Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).
(
10.1038/nature01789
) / Nature by CT Murphy (2003) -
Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).
(
10.1016/j.cell.2005.02.002
) / Cell by C Kenyon (2005) -
Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).
(
10.1126/science.1078223
) / Science by M Bluher (2003) -
Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008). This report indicated that reduced IGF signalling is typical in the offspring of centenarians and suggested that the regulation of lifespan by IGF signalling is conserved in humans. It also showed that high IGF plasma levels can lead to reduced IGF signalling, supporting the idea that feedback loops regulate the IIS pathway.
(
10.1073/pnas.0705467105
) / Proc. Natl Acad. Sci. USA by Y Suh (2008) -
Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004).
(
10.1091/mbc.e03-07-0532
) / Mol. Biol. Cell by JF Morley (2004) -
Liu, X. D., Liu, P. C., Santoro, N. & Thiele, D. J. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J. 16, 6466–6477 (1997).
(
10.1093/emboj/16.21.6466
) / EMBO J. by XD Liu (1997) -
Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. & Wu, C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259, 230–234 (1993).
(
10.1126/science.8421783
) / Science by SK Rabindran (1993) -
Walker, G. A., Thompson, F. J., Brawley, A., Scanlon, T. & Devaney, E. Heat shock factor functions at the convergence of the stress response and developmental pathways in Caenorhabditis elegans. FASEB J. 17, 1960–1962 (2003).
(
10.1096/fj.03-0164fje
) / FASEB J. by GA Walker (2003) -
Sarge, K. D., Murphy, S. P. & Morimoto, R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407 (1993).
(
10.1128/MCB.13.3.1392
) / Mol. Cell. Biol. by KD Sarge (1993) -
Baird, N. A., Turnbull, D. W. & Johnson, E. A. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J. Biol. Chem. 281, 38675–38681 (2006).
(
10.1074/jbc.M608013200
) / J. Biol. Chem. by NA Baird (2006) -
Reinke, H. et al. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev. 22, 331–345 (2008).
(
10.1101/gad.453808
) / Genes Dev. by H Reinke (2008) -
Singh, V. & Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl Acad. Sci. USA 103, 13092–13097 (2006).
(
10.1073/pnas.0604050103
) / Proc. Natl Acad. Sci. USA by V Singh (2006) -
Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447, 545–549 (2007).
(
10.1038/nature05904
) / Nature by NA Bishop (2007) -
Tullet, J. M. et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025–1038 (2008).
(
10.1016/j.cell.2008.01.030
) / Cell by JM Tullet (2008) -
McElwee, J., Bubb, K. & Thomas, J. H. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2, 111–121 (2003).
(
10.1046/j.1474-9728.2003.00043.x
) / Aging Cell by J McElwee (2003) -
Halaschek-Wiener, J. et al. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res. 15, 603–615 (2005).
(
10.1101/gr.3274805
) / Genome Res. by J Halaschek-Wiener (2005) -
Oh, S. W. et al. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature Genet. 38, 251–257 (2006).
(
10.1038/ng1723
) / Nature Genet. by SW Oh (2006) -
Dong, M. Q. et al. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317, 660–663 (2007).
(
10.1126/science.1139952
) / Science by MQ Dong (2007) -
Tonkiss, J. & Calderwood, S. K. Regulation of heat shock gene transcription in neuronal cells. Int. J. Hyperthermia 21, 433–444 (2005).
(
10.1080/02656730500165514
) / Int. J. Hyperthermia by J Tonkiss (2005) -
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).
(
10.1126/science.1068408
) / Science by FU Hartl (2002) -
Barral, J. M., Broadley, S. A., Schaffar, G. & Hartl, F. U. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17–29 (2004).
(
10.1016/j.semcdb.2003.12.010
) / Semin. Cell Dev. Biol. by JM Barral (2004) -
Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).
(
10.1038/nature01960
) / Nature by KT Howitz (2003) -
Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).
(
10.1038/nature02789
) / Nature by JG Wood (2004) -
Valenzano, D. R. et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 16, 296–300 (2006).
(
10.1016/j.cub.2005.12.038
) / Curr. Biol. by DR Valenzano (2006) -
Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005). This study showed that altering aging with the drug Resveratrol protects PolyQ-expressing neurons from protein aggregation. It thus linked the aging process and protein-aggregation neurotoxicity.
(
10.1038/ng1534
) / Nature Genet. by JA Parker (2005) -
Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).
(
10.1038/35065638
) / Nature by HA Tissenbaum (2001) -
Link, C. Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 92, 9368–9372 (1995).
(
10.1073/pnas.92.20.9368
) / Proc. Natl Acad. Sci. USA by C Link (1995) -
Humbert, S. et al. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837 (2002).
(
10.1016/S1534-5807(02)00188-0
) / Dev. Cell by S Humbert (2002) -
Yamamoto, A., Cremona, M. L. & Rothman, J. E. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 172, 719–731 (2006).
(
10.1083/jcb.200510065
) / J. Cell Biol. by A Yamamoto (2006) -
Carro, E., Trejo, J. L., Gomez-Isla, T., LeRoith, D. & Torres-Aleman, I. Serum insulin-like growth factor I regulates brain amyloid-β levels. Nature Med. 8, 1390–1397 (2002).
(
10.1038/nm1202-793
) / Nature Med. by E Carro (2002) -
Carro, E. et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol. Aging 27, 1250–1257 (2006).
(
10.1016/j.neurobiolaging.2005.06.015
) / Neurobiol. Aging by E Carro (2006) -
Gasparini, L. & Xu, H. Potential roles of insulin and IGF-1 in Alzheimer's disease. Trends Neurosci. 26, 404–406 (2003).
(
10.1016/S0166-2236(03)00163-2
) / Trends Neurosci. by L Gasparini (2003) -
Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A. & Bartke, A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl Acad. Sci. USA 103, 7901–7905 (2006).
(
10.1073/pnas.0600161103
) / Proc. Natl Acad. Sci. USA by MS Bonkowski (2006) -
Tomlinson, D. R. & Gardiner, N. J. Glucose neurotoxicity. Nature Rev. Neurosci. 9, 36–45 (2008).
(
10.1038/nrn2294
) / Nature Rev. Neurosci. by DR Tomlinson (2008) -
Zick, Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci. STKE pe4 (2005).
(
10.1126/stke.2682005pe4
) / Science Signaling by Y. Zick (2005) -
George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).
(
10.1126/science.1096706
) / Science by S George (2004) -
Biddinger, S. B. et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell. Metab. 7, 125–134 (2008).
(
10.1016/j.cmet.2007.11.013
) / Cell. Metab. by SB Biddinger (2008) -
Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell. Metab. 7, 95–96 (2008).
(
10.1016/j.cmet.2007.12.009
) / Cell. Metab. by MS Brown (2008) -
Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).
(
10.1016/S1097-2765(05)00015-8
) / Mol. Cell by MD Michael (2000) - Craft, S. et al. Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50, 164–168 (1998). This study indicated that insulin levels can vary in the plasma and in the CSF, and it correlated these levels with severity of dementia in Alzheimer's disease. / Neurology by S Craft (1998)
-
Teede, H. J., Hutchison, S., Zoungas, S. & Meyer, C. Insulin resistance, the metabolic syndrome, diabetes, and cardiovascular disease risk in women with PCOS. Endocrine 30, 45–53 (2006).
(
10.1385/ENDO:30:1:45
) / Endocrine by HJ Teede (2006) -
Walker, D. W., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297 (2000).
(
10.1038/35012693
) / Nature by DW Walker (2000) -
Golden, J. W. & Riddle, D. L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food and temperature. Dev. Biol. 102, 368–378 (1984).
(
10.1016/0012-1606(84)90201-X
) / Dev. Biol. by JW Golden (1984) -
Holzenberger, M. et al. Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular. Endocrinology 142, 4469–4478 (2001).
(
10.1210/endo.142.10.8461
) / Endocrinology by M Holzenberger (2001) -
Patel, D. S. et al. Clustering of genetically defined allele classes in the Caenorhabditis elegans DAF-2 insulin/IGF-1 receptor. Genetics 178, 931–946 (2008).
(
10.1534/genetics.107.070813
) / Genetics by DS Patel (2008) -
Leibson, C. L. et al. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann. NY Acad. Sci. 826, 422–427 (1997).
(
10.1111/j.1749-6632.1997.tb48496.x
) / Ann. NY Acad. Sci. by CL Leibson (1997) -
Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53, 1937–1942 (1999).
(
10.1212/WNL.53.9.1937
) / Neurology by A Ott (1999) -
Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834 (2002).
(
10.1126/science.1074240
) / Science by A Dillin (2002) - McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155–171; discussion 172 (1989). / Nutrition by CM McCay (1989)
-
Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002).
(
10.1038/nature00829
) / Nature by SJ Lin (2002) -
Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).
(
10.1016/0047-6374(77)90043-4
) / Mech. Ageing Dev. by MR Klass (1977) -
Partridge, L., Piper, M. D. & Mair, W. Dietary restriction in Drosophila. Mech. Ageing Dev. 126, 938–950 (2005).
(
10.1016/j.mad.2005.03.023
) / Mech. Ageing Dev. by L Partridge (2005) -
Mair, W., Piper, M. D. & Partridge, L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, e223 (2005).
(
10.1371/journal.pbio.0030223
) / PLoS Biol. by W Mair (2005) -
Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550–555 (2007).
(
10.1038/nature05837
) / Nature by SH Panowski (2007) -
Larsen, P. L., Albert, P. S. & Riddle, D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).
(
10.1093/genetics/139.4.1567
) / Genetics by PL Larsen (1995) -
Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999).
(
10.1096/fasebj.13.11.1385
) / FASEB J. by Y Honda (1999) -
Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540–7544 (1995).
(
10.1073/pnas.92.16.7540
) / Proc. Natl Acad. Sci. USA by GJ Lithgow (1995) -
Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).
(
10.1126/science.1121908
) / Science by JM Pinkston (2006) -
Pinkston-Gosse, J. & Kenyon, C. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nature Genet. 39, 1403–1409 (2007).
(
10.1038/ng.2007.1
) / Nature Genet. by J Pinkston-Gosse (2007) -
Hightower, L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191–197 (1991).
(
10.1016/0092-8674(91)90611-2
) / Cell by LE Hightower (1991) -
Outeiro, T. F. et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).
(
10.1126/science.1143780
) / Science by TF Outeiro (2007) -
Bossy-Wetzel, E., Schwarzenbacher, R. & Lipton, S. A. Molecular pathways to neurodegeneration. Nature Med. 10 (Suppl.), S2–S9 (2004).
(
10.1038/nm1067
) / Nature Med. by E Bossy-Wetzel (2004) -
Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci. 6, 11–22 (2005).
(
10.1038/nrn1587
) / Nature Rev. Neurosci. by PJ Muchowski (2005)
Dates
Type | When |
---|---|
Created | 16 years, 11 months ago (Sept. 4, 2008, 5:43 a.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:11 a.m.) |
Indexed | 3 months ago (May 23, 2025, 3:41 p.m.) |
Issued | 16 years, 11 months ago (Sept. 4, 2008) |
Published | 16 years, 11 months ago (Sept. 4, 2008) |
Published Online | 16 years, 11 months ago (Sept. 4, 2008) |
Published Print | 16 years, 10 months ago (Oct. 1, 2008) |
@article{Cohen_2008, title={The insulin paradox: aging, proteotoxicity and neurodegeneration}, volume={9}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn2474}, DOI={10.1038/nrn2474}, number={10}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Cohen, Ehud and Dillin, Andrew}, year={2008}, month=sep, pages={759–767} }