Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
Bibliography

Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536–546.

Authors 2
  1. Randy J. Nelson (first)
  2. Brian C. Trainor (additional)
References 115 Referenced 787
  1. Berkowitz, L. Aggression: Its Causes, Consequences, and Control (Temple Univ. Press, New York, 1993). / Aggression: Its Causes, Consequences, and Control by L Berkowitz (1993)
  2. Moyer, K. E. The Physiology of Hostility, (Markham, Chicago, 1971). / The Physiology of Hostility by KE Moyer (1971)
  3. Miczek, K. A., Fish, E. W., de Bold, J. F. & de Almeida, R. M. M. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology (Berl.) 163, 434–458 (2002). (10.1007/s00213-002-1139-6) / Psychopharmacology (Berl.) by KA Miczek (2002)
  4. Blair, R. J. R., Peschardt, K. S., Budhani, S. & Pine, D. S., in Biology of Aggression (ed. Nelson, R. J.) 351–368 (Oxford Univ. Press, New York, 2006). / Biology of Aggression by RJR Blair (2006)
  5. Vitiello, B. & Stoff, D. M. Subtypes of aggression and their relevance to child psychiatry. J. Am. Acad. Child Adolesc. Psychiatry 36, 307–315 (1997). This paper emphasized that our understanding and treatment of human aggressive behaviour would benefit from research on specific subtypes of aggression. The authors cluster analyses indicated that a differentiation between the impulsive–affective and controlled–predatory subtypes as qualitatively different forms of aggressive behaviour is a promising construct. (10.1097/00004583-199703000-00008) / J. Am. Acad. Child Adolesc. Psychiatry by B Vitiello (1997)
  6. Viding, E., Frick, P. J. & Plomin, R. Aetiology of the relationship between callous–unemotional traits and conduct problems in childhood. Br. J. Psychiatry 190, 33–38 (2007). (10.1192/bjp.190.5.s33) / Br. J. Psychiatry by E Viding (2007)
  7. Raine, A. Annotation: the role of prefrontal deficits, low autonomic arousal, and early health factors in the development of antisocial and aggressive behavior in children. J. Child Psychol. Psychiatry 43, 417–737 (2002). This paper was the first to review the importance of reduced autonomic arousal in the development of antisocial and aggressive behaviour in children. (10.1111/1469-7610.00034) / J. Child Psychol. Psychiatry by A Raine (2002)
  8. Connor, D. F., Boone, R. T., Steingard, R. J., Lopez, I. D. & Melloni, R. H. Psychopharmacology and aggression II: a meta-analysis of nonstimulant medication effects on overt aggression-related behaviors in youth with SED. J. Emot. Behav. Disord. 11, 157–168 (2003). (10.1177/10634266030110030301) / J. Emot. Behav. Disord. by DF Connor (2003)
  9. Swann, A. C. Neuroreceptor mechanisms of aggression and its treatment. J. Clin. Psychiatry 64, 26–35 (2003). / J. Clin. Psychiatry by AC Swann (2003)
  10. Newman, S. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann. NY Acad. Sci. 877, 242–257 (1999). This review summarizes studies that examined the social behaviour brain circuit and highlights how brain nuclei function in different contexts. (10.1111/j.1749-6632.1999.tb09271.x) / Ann. NY Acad. Sci. by S Newman (1999)
  11. DaVanzo, J. P., Sydow, M. & Garris, D. R. Influence of isolation and training on fighting in mice with olfactory bulb lesions. Physiol. Behav. 31, 857–860 (1983). (10.1016/0031-9384(83)90284-6) / Physiol. Behav. by JP DaVanzo (1983)
  12. Delville, Y., De Vries, G. J. & Ferris, C. F. Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav. Evol. 55, 53–76 (2000). (10.1159/000006642) / Brain Behav. Evol. by Y Delville (2000)
  13. Swanson, L. W. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164 (2000). (10.1016/S0006-8993(00)02905-X) / Brain Res. by LW Swanson (2000)
  14. Kruk, M. R. Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci. Biobehav. Rev. 15, 527–538 (1991). (10.1016/S0149-7634(05)80144-7) / Neurosci. Biobehav. Rev. by MR Kruk (1991)
  15. de Bruin, J. P., van Oyen, H. G. & Van de Poll, N. Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behav. Brain Res. 10, 209–232 (1983). (10.1016/0166-4328(83)90032-3) / Behav. Brain Res. by JP de Bruin (1983)
  16. Kruk, M. R. et al. Comparison of aggressive behaviour induced by electrical stimulation in the hypothalamus of male and female rats. Prog. Brain Res. 61, 303–314 (1984). (10.1016/S0079-6123(08)64443-X) / Prog. Brain Res. by MR Kruk (1984)
  17. Ferris, C. F. & Potegal, M. Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol. Behav. 44, 235–239 (1988). (10.1016/0031-9384(88)90144-8) / Physiol. Behav. by CF Ferris (1988)
  18. Kollack-Walker, S. & Newman, S. W. Mating and agonistic behavior produce different patterns of FOS immunolabeling in the male Syrian hamster brain. Neuroscience 66, 721–736 (1995). (10.1016/0306-4522(94)00563-K) / Neuroscience by S Kollack-Walker (1995)
  19. Davis, E. S. & Marler, C. A. C-fos changes following an aggressive encounter in female California mice: a synthesis of behavior, hormone changes and neural activity. Neuroscience 127, 611–624 (2004). (10.1016/j.neuroscience.2004.05.034) / Neuroscience by ES Davis (2004)
  20. Hasen, N. S. & Gammie, S. C. Differential FOS activation in virgin and lactating mice in response to an intruder. Physiol. Behav. 84, 681–695 (2005). (10.1016/j.physbeh.2005.02.010) / Physiol. Behav. by NS Hasen (2005)
  21. Lipp, H. P. & Hunsperger, R. W. Threat, attack, and flight elicited by electrical stimulation of the ventromedial hypothalamus of the marmoset monkey Callithrix jacchus. Brain Behav. Evol. 15, 260–293 (1978). (10.1159/000123782) / Brain Behav. Evol. by HP Lipp (1978)
  22. Dixson, A. F. & Lloyd, S. A. C. Effects of hypothalamic lesions upon sexual and social behaviour of the male common marmoset (Callithrix jacchus). Brain Res. 463, 317–329 (1988). (10.1016/0006-8993(88)90405-2) / Brain Res. by AF Dixson (1988)
  23. Robinson, B. W. Vocalization evoked from forebrain in Macaca mulatta. Physiol. Behav. 2, 345–354 (1967). (10.1016/0031-9384(67)90050-9) / Physiol. Behav. by BW Robinson (1967)
  24. Alexander, M. & Perachio, A. A. The influence of target sex and dominance on evoked attack in rhesus monkeys. Am. J. Phys. Anthropol. 38, 543–548 (1973). (10.1002/ajpa.1330380264) / Am. J. Phys. Anthropol. by M Alexander (1973)
  25. Machado, C. J. & Bachevalier, J. The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 120, 761–786 (2006). (10.1037/0735-7044.120.4.761) / Behav. Neurosci. by CJ Machado (2006)
  26. Emery, N. J. et al. The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 515–544 (2001). (10.1037/0735-7044.115.3.515) / Behav. Neurosci. by NJ Emery (2001)
  27. Butter, C. M. & Snyder, D. R. Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiol. Exp. 32, 525–565 (1972). / Acta Neurobiol. Exp. by CM Butter (1972)
  28. Gregg, T. R. & Siegel, A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 91–140 (2001). (10.1016/S0278-5846(00)00150-0) / Prog. Neuropsychopharmacol. Biol. Psychiatry by TR Gregg (2001)
  29. Davidson, R. J., Putnam, K. M. & Larson, C. L. Dysfunction in the neural circuitry of emotion regulation — a possible prelude to violence. Science 289, 591–594 (2000). (10.1126/science.289.5479.591) / Science by RJ Davidson (2000)
  30. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neurosci. 2, 1032–1037 (1999). (10.1038/14833) / Nature Neurosci. by SW Anderson (1999)
  31. Volkow, N. D. et al. Brain glucose metabolism in violent psychiatric patients: a preliminary study. Psychiatry Res. 61, 243–253 (1995). (10.1016/0925-4927(95)02671-J) / Psychiatry Res. by ND Volkow (1995)
  32. Soloff, P. H. et al. Impulsivity and prefrontal hypometabolism in borderline personality disorder. Psychiatry Res. 123, 153–163 (2003). (10.1016/S0925-4927(03)00064-7) / Psychiatry Res. by PH Soloff (2003)
  33. Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A. & Phan, K. L. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry 8 January 2007 (doi: 10.1016/j.biopsych.2006.08.024). (10.1016/j.biopsych.2006.08.024) / Biological Psychiatry by Emil F. Coccaro (2007)
  34. Heimburger, R. F., Whillock, C. C. & Kalsbeck, J. E. Stereotaxic amygdalotomy for epilepsy with aggressive behavior. JAMA 198, 741–745 (1966). (10.1001/jama.1966.03110200097026) / JAMA by RF Heimburger (1966)
  35. Scarpa, A. & Raine, A. Psychophysiology of anger and violent behavior. Psychiatr. Clin. North Am. 20, 375–394 (1997). (10.1016/S0193-953X(05)70318-X) / Psychiatr. Clin. North Am. by A Scarpa (1997)
  36. Tonkonogy, J. M. & Geller, J. L. Hypothalamic lesions and intermittent explosive disorder. J. Neuropsychiatry Clin. Neurosci. 4, 45–50 (1992). (10.1176/jnp.4.1.45) / J. Neuropsychiatry Clin. Neurosci. by JM Tonkonogy (1992)
  37. Coccaro, E. F. & Kavoussi, R. J. Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch. Gen. Psychiatry 54, 1081–1088 (1997). (10.1001/archpsyc.1997.01830240035005) / Arch. Gen. Psychiatry by EF Coccaro (1997)
  38. New, A. S. et al. Fluoxetine increases relative metabolic rate in the prefrontal cortex in impulsive aggression. Psychopharmacology (Berl.) 176, 451–458 (2004). (10.1007/s00213-004-1913-8) / Psychopharmacology (Berl.) by AS New (2004)
  39. Parsey, R. V. et al. Effects of sex, age, and aggressive traits in men on brain serotonin 5-HT1A receptor binding potential measured by PET using [C–11]WAY-100635. Brain Res. 954, 173–182 (2002). (10.1016/S0006-8993(02)03243-2) / Brain Res. by RV Parsey (2002)
  40. Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005). (10.1523/JNEUROSCI.3984-05.2005) / J. Neurosci. by P Kirsch (2005)
  41. Winslow, J. T. & Insel, T. R. Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. J. Neurosci. 11, 2032–2038 (1991). (10.1523/JNEUROSCI.11-07-02032.1991) / J. Neurosci. by JT Winslow (1991)
  42. Winslow, J. T. et al. Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm. Behav. 37, 145–155 (2000). (10.1006/hbeh.1999.1566) / Horm. Behav. by JT Winslow (2000)
  43. DeVries, A. C., Young, S. W. & Nelson, R. J. Reduced aggressive behavior in mice with targeted disruption of the oxytocin gene. J. Neuroendocrinol. 9, 363–368 (1997). (10.1046/j.1365-2826.1997.t01-1-00589.x) / J. Neuroendocrinol. by AC DeVries (1997)
  44. Insel, T. R. Oxytocin — a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17, 3–35 (1992). (10.1016/0306-4530(92)90073-G) / Psychoneuroendocrinology by TR Insel (1992)
  45. Manuck, S. B., Kaplan, J. R. & Lotrich, F. E. in Biology of Aggression (ed. Nelson, R. J.) 65–113 (Oxford University Press, New York, 2006). / Biology of Aggression by SB Manuck (2006)
  46. Chiavegatto, S. et al. Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc. Natl Acad. Sci. USA 98, 1277–1281 (2001). (10.1073/pnas.98.3.1277) / Proc. Natl Acad. Sci. USA by S Chiavegatto (2001)
  47. Miczek, K. A., Maxson, S. C., Fish, E. W. & Faccidomo, S. Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125, 167–181 (2001). (10.1016/S0166-4328(01)00298-4) / Behav. Brain Res. by KA Miczek (2001)
  48. Nelson, R. J. & Chiavegatto, S. Molecular basis of aggression. Trends Neurosci. 24, 713–719 (2001). (10.1016/S0166-2236(00)01996-2) / Trends Neurosci. by RJ Nelson (2001)
  49. Olivier, B. Serotonergic mechanisms in aggression. Novartis Found. Symp. 268, 171–183 (2005). / Novartis Found. Symp. by B Olivier (2005)
  50. Saudou, F. et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265, 1875–1878 (1994). (10.1126/science.8091214) / Science by F Saudou (1994)
  51. Ramboz, S. et al. 5-HT1B receptor knock out — behavioral consequences. Behav. Brain Res. 73, 305–312 (1996). (10.1016/0166-4328(96)00119-2) / Behav. Brain Res. by S Ramboz (1996)
  52. Korte, S. M. et al. Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res. 736, 338–343 (1996). (10.1016/0006-8993(96)00723-8) / Brain Res. by SM Korte (1996)
  53. Ase, A. R., Reader, T. A., Hen, R., Riad, M. & Descarries, L. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT1A or 5-HT1B receptor knockout mice. J. Neurochem. 75, 2415–2426 (2000). (10.1046/j.1471-4159.2000.0752415.x) / J. Neurochem. by AR Ase (2000)
  54. Holmes, A., Murphy, D. L. & Crawley, J. N. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl.) 161, 160–167 (2002). (10.1007/s00213-002-1024-3) / Psychopharmacology (Berl.) by A Holmes (2002)
  55. Parsey, R. V. et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C–11]WAY-100635. Brain Res. 954, 173–182 (2002). (10.1016/S0006-8993(02)03243-2) / Brain Res. by RV Parsey (2002)
  56. de Boer, S. F. & Koolhaas, J. M. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur. J. Pharmacol. 526, 125–139 (2005). (10.1016/j.ejphar.2005.09.065) / Eur. J. Pharmacol. by SF de Boer (2005)
  57. de Almeida, R. M. M., Ferrari, P. M., Parmigiani, S. & Miczek, K. A. Escalated aggressive behavior: dopamine, serotonin and GABA. Eur. J. Pharmacol. 526, 51–64 (2005). (10.1016/j.ejphar.2005.10.004) / Eur. J. Pharmacol. by RMM de Almeida (2005)
  58. Ferrari, P. F., van Erp, A. M., Tornatzky, W. & Miczek, K. A. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur. J. Neurosci. 17, 371–378 (2003). This study is unique because it measures dynamic changes in neurotransmitter levels during aggressive encounters in male rats. Interestingly, when aggression tests were regularly scheduled, increased dopamine and decreased 5-HT levels were observed in anticipation of aggressive encounters. (10.1046/j.1460-9568.2003.02447.x) / Eur. J. Neurosci. by PF Ferrari (2003)
  59. Vukhac, K. L., Sankoorikal, E. B. & Wang, Y. Dopamine D2L receptor- and age-related reduction in offensive aggression. Neuroreport 12, 1035–1038 (2001). (10.1097/00001756-200104170-00034) / Neuroreport by KL Vukhac (2001)
  60. Rodriguiz, R. M., Chu, R., Caron, M. G. & Wetsel, W. C. Aberrant responses in social interaction of dopamine transporter knockout mice. Behav. Brain Res. 148, 185–198 (2004). (10.1016/S0166-4328(03)00187-6) / Behav. Brain Res. by RM Rodriguiz (2004)
  61. Miczek, K. A. & Fish, E. W. in Biology of Aggression (ed. Nelson, R. J.) 114–149 (Oxford Univ. Press, New York, 2006). / Biology of Aggression by KA Miczek (2006)
  62. Clement, J. et al. Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol. Biochem. Behav. 26, 83–88 (1987). (10.1016/0091-3057(87)90538-7) / Pharmacol. Biochem. Behav. by J Clement (1987)
  63. Pfaff, D. W. Drive: Neurobiological and Molecular Mechanisms of Sexual Motivation. (MIT Press, Massachusetts, USA, 1999). (10.7551/mitpress/2502.001.0001) / Drive: Neurobiological and Molecular Mechanisms of Sexual Motivation by DW Pfaff (1999)
  64. Haller, J. & Kruk, M. R. Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci. Biobehav. Rev. 30, 292–303 (2006). (10.1016/j.neubiorev.2005.01.005) / Neurosci. Biobehav. Rev. by J Haller (2006)
  65. Marino, M. D., Bourdelat-Parks, B. N., Cameron, L. L. & Weinshenker, D. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav. Brain Res. 161, 197–203 (2005). (10.1016/j.bbr.2005.02.005) / Behav. Brain Res. by MD Marino (2005)
  66. Snyder, S. H. Neuroscience at Johns Hopkins. Neuron 48, 201–211 (2005). (10.1016/j.neuron.2005.10.005) / Neuron by SH Snyder (2005)
  67. Nelson, R. J. et al. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378, 383–386 (1995). The first report to show a role for neuronal nitric oxide synthase in regulating behaviour. Nos1−/− mice were insensitive to social cues; they continued to attack other males that showed submissive displays and attempted to mate with females that were not sexually receptive. (10.1038/378383a0) / Nature by RJ Nelson (1995)
  68. Kriegsfeld, L. J., Dawson, T. M., Dawson, V. L., Nelson, R. J. & Snyder, S. H. Aggressive behavior in male mice lacking the gene for nNOS is testosterone-dependent. Brain Res. 769, 66–70 (1997). (10.1016/S0006-8993(97)00688-4) / Brain Res. by LJ Kriegsfeld (1997)
  69. Trainor, B. C., Workman, J. L., Jessen, R. & Nelson, R. J. Impaired nitric oxide synthase signaling dissociates social investigation and aggression. Behav. Neurosci. 121, 362–369 (2007). (10.1037/0735-7044.121.2.362) / Behav. Neurosci. by BC Trainor (2007)
  70. Shih, J. C., Chen, K. & Ridd, M. J. Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci. 22, 197–217 (1999). This review summarizes converging evidence for the roles of MAOA and MAOB in the regulation of aggressive behaviour in mice. (10.1146/annurev.neuro.22.1.197) / Annu. Rev. Neurosci. by JC Shih (1999)
  71. Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H. & van Oost, B. A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993). (10.1126/science.8211186) / Science by HG Brunner (1993)
  72. Cases, O. et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763–1766 (1995). (10.1126/science.7792602) / Science by O Cases (1995)
  73. Mossner, R. et al. Differential regulation of adenosine A1 and A2A receptors in serotonin transporter and monoamine oxidase A-deficient mice. Eur. Neuropsychopharmacol. 10, 489–493 (2000). (10.1016/S0924-977X(00)00119-X) / Eur. Neuropsychopharmacol. by R Mossner (2000)
  74. Chen, K. et al. Forebrain-specific expression of monoamine oxidase A reduces neurotransmitter levels, restores the brain structure, and rescues aggressive behavior in monoamine oxidase A-deficient mice. J. Biol. Chem. 282, 115–123 (2007). (10.1074/jbc.M609830200) / J. Biol. Chem. by K Chen (2007)
  75. Sabol, S. Z., Hu, S. & Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 103, 273–279 (1998). (10.1007/s004390050816) / Hum. Genet. by SZ Sabol (1998)
  76. Manuck, S. B., Flory, J. D., Ferrell, R. E., Mann, J. J. & Muldoon, M. F. A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system responsivity. Psychiatry Res. 95, 9–23 (2000). (10.1016/S0165-1781(00)00162-1) / Psychiatry Res. by SB Manuck (2000)
  77. Beitchman, J. H., Mik, H. M., Ehtesham, S., Douglas, L. & Kennedy, J. L. MAOA and persistent, pervasive childhood aggression. Mol. Psychiatry 9, 546–547 (2004). (10.1038/sj.mp.4001492) / Mol. Psychiatry by JH Beitchman (2004)
  78. Demas, G. E., Moffatt, C. A., Drazen, D. L. & Nelson, R. J. Castration does not inhibit aggressive behavior in adult male prairie voles (Microtus ochrogaster). Physiol. Behav. 66, 59–62 (1999). (10.1016/S0031-9384(98)00268-6) / Physiol. Behav. by GE Demas (1999)
  79. Trainor, B. C., Greiwe, K. M. & Nelson, R. J. Individual differences in estrogen receptor α in select brain nuclei are associated with individual differences in aggression. Horm. Behav. 50, 338–345 (2006). (10.1016/j.yhbeh.2006.04.002) / Horm. Behav. by BC Trainor (2006)
  80. Field, E. F., Whishaw, I. Q., Pellis, S. M. & Watson, N. V. Play fighting in androgen-insensitive tfm rats: evidence that androgen receptors are necessary for the development of adult playful attack and defense. Dev. Psychobiol. 48, 111–120 (2006). (10.1002/dev.20121) / Dev. Psychobiol. by EF Field (2006)
  81. Simon, N. G., Cologer-Clifford, A., Lu, S. F., McKenna, S. E. & Hu, S. Testosterone and its metabolites modulate 5HT1A and 5HT1B agonist effects on intermale aggression. Neurosci. Biobehav. Rev. 23, 325–336 (1998). (10.1016/S0149-7634(98)00034-7) / Neurosci. Biobehav. Rev. by NG Simon (1998)
  82. Siegel, A., Roeling, T. A., Gregg, T. R. & Kruk, M. R. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci. Biobehav. Rev. 23, 359–389 (1999). (10.1016/S0149-7634(98)00040-2) / Neurosci. Biobehav. Rev. by A Siegel (1999)
  83. Trainor, B. C., Kyomen, H. H. & Marler, C. A. Estrogenic encounters: how interactions between aromatase and the environment modulate aggression. Front Neuroendocrinol. 27, 170–179 (2006). (10.1016/j.yfrne.2005.11.001) / Front Neuroendocrinol. by BC Trainor (2006)
  84. Ogawa, S., Lubahn, D. B., Korach, K. S. & Pfaff, D. W. Behavioral effects of estrogen receptor gene disruption in male mice. Proc. Natl Acad. Sci. USA 94, 1476–1481 (1997). (10.1073/pnas.94.4.1476) / Proc. Natl Acad. Sci. USA by S Ogawa (1997)
  85. Scordalakes, E. M. & Rissman, E. F. Aggression in male mice lacking functional estrogen receptor α. Behav. Neurosci. 117, 38–45 (2003). (10.1037/0735-7044.117.1.38) / Behav. Neurosci. by EM Scordalakes (2003)
  86. Ogawa, S. et al. Survival of reproductive behaviors in estrogen receptor β gene-deficient (βERKO) male and female mice. Proc. Natl Acad. Sci. USA 96, 12887–12892 (1999). (10.1073/pnas.96.22.12887) / Proc. Natl Acad. Sci. USA by S Ogawa (1999)
  87. Nomura, M. et al. Estrogen receptor-β gene disruption potentiates estrogen-inducible aggression but not sexual behaviour in male mice. Eur. J. Neurosci. 23, 1860–1868 (2006). (10.1111/j.1460-9568.2006.04703.x) / Eur. J. Neurosci. by M Nomura (2006)
  88. Nomura, M. et al. Genotype/age interactions on aggressive behavior in gonadally intact estrogen receptor β knockout (βERKO) male mice. Horm. Behav. 41, 288–296 (2002). (10.1006/hbeh.2002.1773) / Horm. Behav. by M Nomura (2002)
  89. Scott, J. P. Genetic differences in the social behavior of inbred strains of mice. J. Hered. 33, 11–15 (1942). (10.1093/oxfordjournals.jhered.a105080) / J. Hered. by JP Scott (1942)
  90. Ginsburg, B. E. & Allee, W. C. Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiol. Zool. 15, 485–506 (1942). (10.1086/physzool.15.4.30151662) / Physiol. Zool. by BE Ginsburg (1942)
  91. Young, K. A. et al. Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav. Brain Res. 132, 145–158 (2002). (10.1016/S0166-4328(01)00413-2) / Behav. Brain Res. by KA Young (2002)
  92. Abrahams, B. S. et al. Pathological aggression in 'fierce' mice corrected by human nuclear receptor 2E1. J. Neurosci. 25, 6263–6270, (2005). (10.1523/JNEUROSCI.4757-04.2005) / J. Neurosci. by BS Abrahams (2005)
  93. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2003). This report helped spark renewed interest in studying the mechanisms of gene–environment interactions in humans. It shows that individuals that are homozygous for the short allele of the 5-HT transporter promoter are more likely to suffer mental disorders, but only if they were maltreated as children. (10.1126/science.1072290) / Science by A Caspi (2003)
  94. Kim-Cohen, J. et al. MAOA, maltreatment, and gene–environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol. Psychiatry 11, 903–913 (2006). (10.1038/sj.mp.4001851) / Mol. Psychiatry by J Kim-Cohen (2006)
  95. Caspi, A. et al. Influence of life stress on depression: moderation by polymorphism in the 5-HTT gene. Science, 301, 386–389 (2003). (10.1126/science.1083968) / Science by A Caspi (2003)
  96. Greenberg, B. D. et al. Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am. J. Med. Genet. 88, 83–87 (1999). (10.1002/(SICI)1096-8628(19990205)88:1<83::AID-AJMG15>3.0.CO;2-0) / Am. J. Med. Genet. by BD Greenberg (1999)
  97. Barr, C. S. et al. Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol. Psychiatry 55, 733–738 (2004). (10.1016/j.biopsych.2003.12.008) / Biol. Psychiatry by CS Barr (2004)
  98. Canli, T. et al. Neural correlates of epigenesis. Proc. Natl Acad. Sci. USA 103, 16033–16038 (2006). This study looked at how the interaction between the 5-HT transporter and the environment influences brain function. Life stressors were found to affect functional connectivity in the amygdala and hippocampus as a function of 5-HT transporter genotype. (10.1073/pnas.0601674103) / Proc. Natl Acad. Sci. USA by T Canli (2006)
  99. Verona, E., Joiner, T. E., Johnson, F. & Bender, T. W. Gender specific gene–environment interactions on laboratory-assessed aggression. Biol. Psychol. 71, 33–41 (2006). (10.1016/j.biopsycho.2005.02.001) / Biol. Psychol. by E Verona (2006)
  100. Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403 (2002). (10.1126/science.1071829) / Science by AR Hariri (2002)
  101. Trainor, B. C., Lin, S., Finy, M. S., Rowland, M. R. & Nelson, R. J. Photoperiod reverses the effects of estrogen on male aggression via genomic and non-genomic pathways. Proc. Natl Acad. Sci. USA 5 June 2007 (doi: 10.1073/pnas.0701819104). This study used a precise environmental factor, day length, to probe gene function. When beach mice were exposed to 16 hours of light each day, oestrogen hormones decreased aggression, but when mice were exposed to only 8 hours of light each day, oestrogen hormones acted rapidly to increase aggression. (10.1073/pnas.0701819104) / Proceedings of the National Academy of Sciences by B. C. Trainor (2007)
  102. Vasudevan, N. & Pfaff, D. W. Membrane initiated actions of estrogens in neuroendocrinology: emerging principles. Endocr. Rev. 28, 1–19 (2006). (10.1210/er.2005-0021) / Endocr. Rev. by N Vasudevan (2006)
  103. Earley, R. L. & Dugatkin, L. A. Eavesdropping on visual cues in green swordtail (Xiphophorus helleri) fights: a case for networking. Proc. R. Soc. Lond. B Biol. Sci. 269, 943–952 (2002). (10.1098/rspb.2002.1973) / Proc. R. Soc. Lond. B Biol. Sci. by RL Earley (2002)
  104. Peake, T. M., Terry, A. M. R., McGregor, P. K. & Dabelsteen, T. Do great tits assess rivals by combining direct experience with information gathered by eavesdropping? Proc. R. Soc. Lond. B Biol. Sci. 269, 1925–1929 (2002). (10.1098/rspb.2002.2112) / Proc. R. Soc. Lond. B Biol. Sci. by TM Peake (2002)
  105. Bernhardt, P. C., Dabbs, J. M. & Fielden, J. A. Testosterone changes during vicarious experiences of winning and losing among fans at sporting events. Physiol. Behav. 65, 59–62 (1998). (10.1016/S0031-9384(98)00147-4) / Physiol. Behav. by PC Bernhardt (1998)
  106. Mathiak, K. & Weber, R. Toward brain correlates of natural behavior: fMRI during violent video games. Hum. Brain Mapp. 27, 948–956 (2006). (10.1002/hbm.20234) / Hum. Brain Mapp. by K Mathiak (2006)
  107. Mathews, V. P. et al. Media violence exposure and frontal lobe activation measured by functional magnetic resonance imaging in aggressive and nonaggressive adolescents. J. Comput. Assist. Tomogr. 29, 287–292 (2005). (10.1097/01.rct.0000162822.46958.33) / J. Comput. Assist. Tomogr. by VP Mathews (2005)
  108. Cherek, D. R., Tcheremissine, O. V. & Lane, S. D. in Biology of Aggression (ed. Nelson, R. J.) 424–446 (Oxford Univ. Press, New York, 2006). / Biology of Aggression by DR Cherek (2006)
  109. Darwin, C. The Expression of the Emotions in Man and Animals. (John Murray, London, 1872). (10.1037/10001-000) / The Expression of the Emotions in Man and Animals by C Darwin (1872)
  110. Berridge, K. C. in Handbook of Affective Sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) 25–51 (Oxford Univ. Press, New York, 2003). / Handbook of Affective Sciences by KC Berridge (2003)
  111. Haller, J., Mikics, E., Halasz, J. & Toth, M. Mechanisms differentiating normal from abnormal aggression: glucocorticoids and serotonin. Eur. J. Pharmacol. 526, 89–100 (2005). This paper outlines a framework for classifying and studying aggressive behaviour in humans. The authors emphasize that aggression can occur in states of both hyperarousal and hypoarousal, and that different mechanisms are expected to be important in each affective context. (10.1016/j.ejphar.2005.09.064) / Eur. J. Pharmacol. by J Haller (2005)
  112. Simon, N. G. & Lu, S. in Biology of Aggression (ed. Nelson, R. J.) 211–230 (Oxford Univ. Press, New York, 2005). (10.1093/acprof:oso/9780195168761.003.0009) / Biology of Aggression by NG Simon (2005)
  113. Albert, D. J., Walsh, M. L. & Jonik, R. H. Aggression in humans: what is its biological foundation? Neurosci. Biobehav. Rev. 17, 405–425 (1993). (10.1016/S0149-7634(05)80117-4) / Neurosci. Biobehav. Rev. by DJ Albert (1993)
  114. Wingfield, J. C., Hegner, R. E., Dufty, A. M. Jr & Ball, G. F. The 'challenge hypothesis': theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am. Nat. 136, 829–846 (1990). (10.1086/285134) / Am. Nat. by JC Wingfield (1990)
  115. Mazur, A. & Booth, A. Testosterone and dominance in men. Behav. Brain Sci. 21, 353–397 (1998). (10.1017/S0140525X98001228) / Behav. Brain Sci. by A Mazur (1998)
Dates
Type When
Created 18 years, 2 months ago (June 21, 2007, 7:41 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:09 p.m.)
Indexed 5 minutes ago (Sept. 3, 2025, 6:48 a.m.)
Issued 18 years, 2 months ago (July 1, 2007)
Published 18 years, 2 months ago (July 1, 2007)
Published Print 18 years, 2 months ago (July 1, 2007)
Funders 0

None

@article{Nelson_2007, title={Neural mechanisms of aggression}, volume={8}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn2174}, DOI={10.1038/nrn2174}, number={7}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Nelson, Randy J. and Trainor, Brian C.}, year={2007}, month=jul, pages={536–546} }