Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
References
151
Referenced
451
-
Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000). An excellent review that introduces general aspects of Ca2+ signalling.
(
10.1038/35036035
) / Nature Rev. Mol. Cell Biol. by MJ Berridge (2000) -
Ikura, M. & Ames, J. B. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc. Natl Acad. Sci. USA 103, 1159–1164 (2006). An overview of the diversity of EF-hand-containing Ca2+-binding proteins.
(
10.1073/pnas.0508640103
) / Proc. Natl Acad. Sci. USA by M Ikura (2006) -
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).
(
10.1038/35065004
) / Nature by R Fernandez-Chacon (2001) -
Burgoyne, R. D. & Weiss, J. L. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem. J. 353, 1–12 (2001).
(
10.1042/bj3530001
) / Biochem. J. by RD Burgoyne (2001) -
Burgoyne, R. D., O'Callaghan, D. W., Hasdemir, B., Haynes, L. P. & Tepikin, A. V. Neuronal calcium sensor proteins: multitalented regulators of neuronal function. Trends Neurosci. 27, 203–209 (2004).
(
10.1016/j.tins.2004.01.010
) / Trends Neurosci. by RD Burgoyne (2004) -
Sabatini, B. L., Oertner, T. G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).
(
10.1016/S0896-6273(02)00573-1
) / Neuron by BL Sabatini (2002) -
Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).
(
10.1016/S0896-6273(03)00639-1
) / Neuron by GJ Augustine (2003) -
Berridge, M. J. Neuronal calcium signalling. Neuron 21, 13–26 (1998).
(
10.1016/S0896-6273(00)80510-3
) / Neuron by MJ Berridge (1998) -
Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996).
(
10.1038/384170a0
) / Nature by BL Sabatini (1996) -
Yang, S.-N., Tang, Y.-G. & Zucker, R. S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 81, 781–787 (1999).
(
10.1152/jn.1999.81.2.781
) / J. Neurophysiol. by S-N Yang (1999) -
Gomez, T. M. & Zheng, J. Q. The molecular basis for calcium-dependent axon pathfinding. Nature Rev. Neurosci. 7, 115–125 (2006).
(
10.1038/nrn1844
) / Nature Rev. Neurosci. by TM Gomez (2006) -
Bito, H., Deisseroth, K. & Tsien, R. W. Ca2+-dependent regulation in neuronal gene expression. Curr. Opin. Neurobiol. 7, 419–429 (1997).
(
10.1016/S0959-4388(97)80072-4
) / Curr. Opin. Neurobiol. by H Bito (1997) -
Hara, M. R. & Snyder, S. H. Cell signaling and neuronal death. Annu. Rev. Pharmacol. Toxicol. 47, 117–141 (2006).
(
10.1146/annurev.pharmtox.47.120505.105311
) / Annu. Rev. Pharmacol. Toxicol. by MR Hara (2006) -
Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).
(
10.1038/nrn753
) / Nature Rev. Neurosci. by J Lisman (2002) -
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).
(
10.1101/gad.1102703
) / Genes Dev. by PG Hogan (2003) -
Pongs, O. et al. Frequenin — A novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15–28 (1993).
(
10.1016/0896-6273(93)90267-U
) / Neuron by O Pongs (1993) -
Nef, S., Fiumelli, H., de Castro, E., Raes, M.-B. & Nef, P. Identification of a neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J. Receptor Signal Trans. 15, 365–378 (1995).
(
10.3109/10799899509045227
) / J. Receptor Signal Trans. by S Nef (1995) -
McFerran, B. W., Graham, M. E. & Burgoyne, R. D. NCS-1, the mammalian homologue of frequenin is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 273, 22768–22772 (1998).
(
10.1074/jbc.273.35.22768
) / J. Biol. Chem. by BW McFerran (1998) -
Kapp-Barnea, Y., Melnikov, S., Shefler, I., Jeromin, A. & Sagi-Eisenberg, R. Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase β regulate IgE receptor-triggered exocytosis in cultured mast cells. J. Immunol. 171, 5320–5327 (2003).
(
10.4049/jimmunol.171.10.5320
) / J. Immunol. by Y Kapp-Barnea (2003) -
Gierke, P. et al. Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western Blot analysis. Biochem. Biophys. Res. Comm. 323, 38–43 (2004).
(
10.1016/j.bbrc.2004.08.055
) / Biochem. Biophys. Res. Comm. by P Gierke (2004) -
Hendricks, K. B., Wang, B. Q., Schnieders, E. A. & Thorner, J. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nature Cell Biol. 1, 234–241 (1999). Demonstrates the presence of an NCS-1 orthologue in yeast for the first time, shows that it is essential for survival and also identifies its target protein. The interaction with phosphatidylinositol-4-OH kinase was later confirmed for the mammalian proteins.
(
10.1038/12058
) / Nature Cell Biol. by KB Hendricks (1999) -
Blasiole, B. et al. Neuronal calcium sensor-1 gene ncs-1 is essential for semicircular canal formation in zebrafish inner ear. J. Neurobiol. 64, 285–297 (2005).
(
10.1002/neu.20138
) / J. Neurobiol. by B Blasiole (2005) -
Palczewski, K., Sokal, I. & Baehr, W. Guanylate cyclase-activating proteins: structure, function and diversity. Biochem. Biophys. Res. Comm. 322, 1123–1130 (2004).
(
10.1016/j.bbrc.2004.07.122
) / Biochem. Biophys. Res. Comm. by K Palczewski (2004) -
Pruunsild, P. & Timmusk, T. Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics 86, 581–593 (2005). A comprehensive analysis of the expression of KChIP splice variants in the human and mouse brain.
(
10.1016/j.ygeno.2005.07.001
) / Genomics by P Pruunsild (2005) -
Paterlini, M., Revilla, V., Grant, A. L. & Wisden, W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 99, 205–216 (2000).
(
10.1016/S0306-4522(00)00201-3
) / Neuroscience by M Paterlini (2000) -
Kobayashi, M., Takamatsu, K., Saitoh, S., Miura, M. & Noguchi, T. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochem. Biophys. Res. Commun. 189, 511–517 (1992).
(
10.1016/0006-291X(92)91587-G
) / Biochem. Biophys. Res. Commun. by M Kobayashi (1992) -
Bourne, Y., Dannenberg, J., Pollmann, V., Marchot, P. & Pongs, O. Immunocytochemical localisation and crystal structure of human frequenin (neuronal calcium sensor 1). J. Biol. Chem. 276, 11949–11955 (2001).
(
10.1074/jbc.M009373200
) / J. Biol. Chem. by Y Bourne (2001) -
Ames, J. B. et al. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. Biochemistry 39, 12149–12161 (2000).
(
10.1021/bi0012890
) / Biochemistry by JB Ames (2000) -
Vijay-Kumar, S. & Kumar, V. D. Crystal structure of recombinant bovine neurocalcin. Nature Struct. Biol. 6, 80–88 (1999).
(
10.1038/4956
) / Nature Struct. Biol. by S Vijay-Kumar (1999) -
Ames, J. B., Dizhoor, A. M., Ikura, M., Palczewski, K. & Stryer, L. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J. Biol. Chem. 274, 19329–19337 (1999).
(
10.1074/jbc.274.27.19329
) / J. Biol. Chem. by JB Ames (1999) -
Stephen, R., Palczewski, K. & Sousa, M. C. The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. J. Mol. Biol. 359, 266–275 (2006).
(
10.1016/j.jmb.2006.03.042
) / J. Mol. Biol. by R Stephen (2006) -
Ames, J. B. et al. Molecular mechanics of calcium-myristoyl switches. Nature 389, 198–202 (1997). A classic paper on the structural characterization of myristoylated recoverin in its calcium bound-form, which illuminates the basis of the Ca2+/myristoyl switch.
(
10.1038/38310
) / Nature by JB Ames (1997) -
Zhou, W., Qian, Y., Kunjilwar, K., Pfaffinger, P. J. & Choe, S. Structural insights into the functional interaction of KChIP1 with shal-type K+ channels. Neuron 41, 573–586 (2004).
(
10.1016/S0896-6273(04)00045-5
) / Neuron by W Zhou (2004) -
Scannevin, R. H. et al. Two N-terminal domains of Kv4 K+ channels regulate binding to and modulation by KChIP1. Neuron 41, 587–598 (2004).
(
10.1016/S0896-6273(04)00049-2
) / Neuron by RH Scannevin (2004) -
Takimoto, K., Yang, E.-K. & Conforti, L. Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels. J. Biol. Chem. 277, 26904–26911 (2002).
(
10.1074/jbc.M203651200
) / J. Biol. Chem. by K Takimoto (2002) -
Spilker, C., Dresbach, T. & Braunewell, K.-H. Reversible translocation and activity-dependent localisation of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J. Neurosci. 22, 7331–7339 (2002).
(
10.1523/JNEUROSCI.22-17-07331.2002
) / J. Neurosci. by C Spilker (2002) -
O'Callaghan, D. W., Tepikin, A. V. & Burgoyne, R. D. Dynamics and calcium-sensitivity of the Ca2+-myristoyl switch protein hippocalcin in living cells. J. Cell Biol. 163, 715–721 (2003). Analysis of the Ca2+/myristoyl switch of hippocalcin in living cells, through the use of confocal imaging and elevation of intracellular Ca2+ by photolysis of caged calcium.
(
10.1083/jcb.200306042
) / J. Cell Biol. by DW O'Callaghan (2003) -
O'Callaghan, D. W. et al. Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+-signal transduction. J. Biol. Chem. 277, 14227–14237 (2002).
(
10.1074/jbc.M111750200
) / J. Biol. Chem. by DW O'Callaghan (2002) -
O'Callaghan, D. W., Hasdemir, B., Leighton, M. & Burgoyne, R. D. Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels. J. Cell Sci. 116, 4833–4845. (2003).
(
10.1242/jcs.00803
) / J. Cell Sci. by DW O'Callaghan (2003) -
Hasdemir, B., Fitzgerald, D. J., Prior, I. A., Tepikin, A. V. & Burgoyne, R. D. Traffic of Kv4 K+ channels mediated by KChIP1 is via a novel post-ER vesicular pathway. J. Cell Biol. 171, 459–469 (2005).
(
10.1083/jcb.200506005
) / J. Cell Biol. by B Hasdemir (2005) -
O'Callaghan, D. W., Haynes, L. P. & Burgoyne, R. D. High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4, 5-bisphosphate. Biochem. J. 391, 231–238 (2005).
(
10.1042/BJ20051001
) / Biochem. J. by DW O'Callaghan (2005) -
Dizhoor, A. M. et al. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251, 915–918 (1991).
(
10.1126/science.1672047
) / Science by AM Dizhoor (1991) -
Chen, C. K., Inglese, J., Lefkowitz, R. J. & Hurley, J. B. Ca2+-dependent interaction of recoverin with rhodopsin kinase. J. Biol. Chem. 270, 18060–18066 (1995).
(
10.1074/jbc.270.30.18060
) / J. Biol. Chem. by CK Chen (1995) -
Makino, C. L. et al. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J. Gen. Physiol. 123, 729–741 (2004).
(
10.1085/jgp.200308994
) / J. Gen. Physiol. by CL Makino (2004) -
Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L. & Ikura, M. Sequestration of the membrane targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447 (1995).
(
10.1038/376444a0
) / Nature by T Tanaka (1995) -
Senin, I. I. et al. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+ binding sites. J. Biol. Chem. 277, 50365–50372 (2002).
(
10.1074/jbc.M204338200
) / J. Biol. Chem. by II Senin (2002) -
Ames, J. B., Hamashima, N. & Molchanova, T. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. Biochemistry 41, 5776–5787 (2002).
(
10.1021/bi012153k
) / Biochemistry by JB Ames (2002) -
Weiergraber, O. H., Senin, I. I., Philippov, P. P., Granzin, J. & Koch, K.-W. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J. Biol. Chem. 278, 22972–22979 (2003).
(
10.1074/jbc.M300447200
) / J. Biol. Chem. by OH Weiergraber (2003) -
Spilker, C. & Braunewell, K.-H. Calcium-myristoyl switch, subcellular localisation, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Mol. Cell. Neurosci. 24, 766–778 (2003).
(
10.1016/S1044-7431(03)00242-2
) / Mol. Cell. Neurosci. by C Spilker (2003) -
Oleshevskaya, E. V., Hughes, E. E., Hurley, J. B. & Dizhoor, A. M. Calcium binding, but not calcium-myristoyl switch, controls the ability of guanyl cylcase-activating protein GCAP-2 to regulated photoreceptor guanyl cyclase. J. Biol. Chem. 272, 14327–14333 (1997).
(
10.1074/jbc.272.22.14327
) / J. Biol. Chem. by EV Oleshevskaya (1997) -
Ames, J. B., Levay, K., Wingard, J. N., Lusin, J. D. & Slepak, V. Z. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin. J. Biol. Chem. 281, 37237–37245 (2006).
(
10.1074/jbc.M606913200
) / J. Biol. Chem. by JB Ames (2006) -
Pioletti, M., Findeisen, F., Hura, G. L. & Minor, D. L. Three-dimensional structure of the KChIP1–Kv4. 3 T1 complex reveals a cross-shaped octamer. Nature Struct. Mol. Biol. 13, 987–995 (2006).
(
10.1038/nsmb1164
) / Nature Struct. Mol. Biol. by M Pioletti (2006) -
Palczewski, K., Polans, A., Baehr, W. & Ames, J. B. Ca2+-binding proteins in the retina: structure, function and the etiology of human visual diseases. BioEssays 22, 337–350 (2000).
(
10.1002/(SICI)1521-1878(200004)22:4<337::AID-BIES4>3.0.CO;2-Z
) / BioEssays by K Palczewski (2000) -
Bahi, N. et al. IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with Neuronal Calcium Sensor-1 and regulates exocytosis. Hum. Mol. Genet. 12, 1415–1425 (2003).
(
10.1093/hmg/ddg147
) / Hum. Mol. Genet. by N Bahi (2003) -
Wang, H. et al. Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nature Neurosci. 10, 32–39 (2007). Structure for a complex between KChIP1 and the N-terminus of a Kv4.3 channel that demonstrates two sites of interaction. This paper presents a structure which differs from that published earlier and which could have been artefactual. See also reference 52 for a similar structure.
(
10.1038/nn1822
) / Nature Neurosci. by H Wang (2007) -
Callsen, B. et al. Contribution of N- and C-terminal Kv channel domains to KChIP interaction. J. Physiol. 568, 397–412 (2005).
(
10.1113/jphysiol.2005.094359
) / J. Physiol. by B Callsen (2005) -
Han, W., Nattel, S., Noguchi, T. & Shrier, A. C-terminal domain of Kv4.2 and associated KChIP2 interactions regulate functional expression and gating of Kv4.2. J. Biol. Chem. 281, 27134–27144 (2006).
(
10.1074/jbc.M604843200
) / J. Biol. Chem. by W Han (2006) -
Sampath, A. et al. Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Neuron 46, 413–420 (2005).
(
10.1016/j.neuron.2005.04.006
) / Neuron by A Sampath (2005) -
Howes, K. A. et al. GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J. 21, 1545–1554 (2002).
(
10.1093/emboj/21.7.1545
) / EMBO J. by KA Howes (2002) -
Pennesi, M. E., Howes, K. A., Baehr, W. & Wu, S. M. Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc. Natl Acad. Sci. USA 100, 6783–6788 (2003).
(
10.1073/pnas.1130102100
) / Proc. Natl Acad. Sci. USA by ME Pennesi (2003) -
An, W. F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000). The first demonstration of an interaction between KChIPs 1–3 and Kv4 channels, and analysis of the functional consequences for surface expression and channel gating properties.
(
10.1038/35000592
) / Nature by WF An (2000) -
Buxbaum, J. D. et al. Calsenilin: A calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nature Med. 4, 1177–1181 (1998).
(
10.1038/2673
) / Nature Med. by JD Buxbaum (1998) -
Jo, D.-G., Jang, J., Kim, B.-J., Lundkvist, J. & Jung, Y.-K. Overexpression of calsenilin enhances γ-secretase activity. Neurosci. Lett. 378, 59–64 (2004).
(
10.1016/j.neulet.2004.12.078
) / Neurosci. Lett. by D-G Jo (2004) -
Leissring, M. A. et al. Calsenilin reverses presenilin-mediated enhancement of calcium signalling. Proc. Natl Acad. Sci. USA 97, 8590–8593 (2000).
(
10.1073/pnas.97.15.8590
) / Proc. Natl Acad. Sci. USA by MA Leissring (2000) -
Morohashi, Y. et al. Molecular cloning and characterisation of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit kv4. J. Biol. Chem. 277, 14965–14975 (2002).
(
10.1074/jbc.M200897200
) / J. Biol. Chem. by Y Morohashi (2002) -
Carrion, A. M., Link, W. A., Ledo, F., Mellstrom, B. & Naranjo, J. R. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999). Describes the discovery of DREAM (KChIP3) as a repressor of transcription of specific genes containing the DRE element, including prodynophin and c- Fos . It shows that the repression is lost when DREAM binds calcium, as the Ca2+-bound form cannot bind to the DRE element.
(
10.1038/18044
) / Nature by AM Carrion (1999) -
Rivas, M., Mellstrom, B., Naranjo, J. R. & Santisteban, P. Transcriptional repressor DREAM interacts with thyroid transcription factor-1 and regulates thyroglobulin gene expression. J. Biol. Chem. 279, 33114–33122 (2004).
(
10.1074/jbc.M403526200
) / J. Biol. Chem. by M Rivas (2004) -
Zaidi, N. F. et al. Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). J. Neurochem. 98, 1290–1301 (2006).
(
10.1111/j.1471-4159.2006.03972.x
) / J. Neurochem. by NF Zaidi (2006) -
Link, W. A. et al. Day–night changes in downstream regulatory element antagonist modulator/potassium channel interacting protein activity contribute to circadian gene expression in pineal gland. J. Neurosci. 24, 5346–5355 (2004).
(
10.1523/JNEUROSCI.1460-04.2004
) / J. Neurosci. by WA Link (2004) -
Cheng, H.-Y. M. et al. DREAM is a critical transcriptional repressor for pain modulation. Cell 108, 31–43 (2002).
(
10.1016/S0092-8674(01)00629-8
) / Cell by H-YM Cheng (2002) -
Lilliehook, C. et al. Altered Aβ formation and long-term potentiation in a calsenilin knock-out. J. Neurosci. 23, 9097–9106 (2003). Along with reference 70, this knockout mouse study established physiological functions of KChIP3/DREAM/calsenilin.
(
10.1523/JNEUROSCI.23-27-09097.2003
) / J. Neurosci. by C Lilliehook (2003) -
Braunewell, K.-H. The darker side of Ca2+ signaling by neuronal Ca2+-sensor proteins: from Alzheimer's disease to cancer. Trends Pharmacol. Sci. 26, 345–351 (2005).
(
10.1016/j.tips.2005.04.008
) / Trends Pharmacol. Sci. by K-H Braunewell (2005) -
Kabbani, N., Negyessy, L., Lin, R., Goldman-Rakic, P. & Levenson, R. Interaction with the neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J. Neurosci. 22, 8476–8486 (2002).
(
10.1523/JNEUROSCI.22-19-08476.2002
) / J. Neurosci. by N Kabbani (2002) -
Koh, P. O. et al. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl Acad. Sci. USA 100, 313–317 (2003).
(
10.1073/pnas.232693499
) / Proc. Natl Acad. Sci. USA by PO Koh (2003) -
Dahl, J. P. et al. Interaction between variation in the D2 dopamine receptor (DRD2) and the neuronal calcium sensor-1 (FREQ) genes in predicting response to nicotine replacement therapy for tobacco dependence. Pharmacogenomics J. 6, 194–199 (2006).
(
10.1038/sj.tpj.6500358
) / Pharmacogenomics J. by JP Dahl (2006) -
Coukell, B., Cameron, A., Perusini, S. & Shim, K. Disruption of the NCS-1/frequenin-related ncsA gene in Dictyostelium discoideum accelerates development. Dev. Growth Differ. 46, 449–458 (2004).
(
10.1111/j.1440-169x.2004.00761.x
) / Dev. Growth Differ. by B Coukell (2004) -
Gomez, M. et al. Ca2+ signalling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30, 241–248 (2001).
(
10.1016/S0896-6273(01)00276-8
) / Neuron by M Gomez (2001) -
Zhao, X. et al. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase β stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J. Biol. Chem. 276, 40183–40189 (2001).
(
10.1074/jbc.M104048200
) / J. Biol. Chem. by X Zhao (2001) -
Haynes, L. P., Thomas, G. M. H. & Burgoyne, R. D. Interaction of neuronal calcium sensor-1 and ARF1 allows bidirectional control of PI4 kinase and TGN-plasma membrane traffic. J. Biol. Chem. 280, 6047–6054 (2005).
(
10.1074/jbc.M413090200
) / J. Biol. Chem. by LP Haynes (2005) -
Haynes, L. P. et al. Analysis of the interacting partners of the neuronal calcium-binding proteins L-CaBP1, hippocalcin, NCS-1 and neurocalcin. Proteomics 6, 1822–1832 (2006). A demonstration of the range, diversity and specificity of interacting proteins for members of the NCS and Ca2+-binding protein families.
(
10.1002/pmic.200500489
) / Proteomics by LP Haynes (2006) -
Dizhoor, A. M. & Hurley, J. B. Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanulyl cyclase by preventing a Ca2+-induced 'activator-to-inhibitor' transition. J. Biol. Chem. 271, 19346–19350 (1996).
(
10.1074/jbc.271.32.19346
) / J. Biol. Chem. by AM Dizhoor (1996) -
Imanishi, Y. et al. Characterisation of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur. J. Neurosci. 15, 63–78 (2002).
(
10.1046/j.0953-816x.2001.01835.x
) / Eur. J. Neurosci. by Y Imanishi (2002) -
Hwang, J.-Y. et al. Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca2+-sensitivity. Eur. J. Biochem. 270, 3814–3821 (2003).
(
10.1046/j.1432-1033.2003.03770.x
) / Eur. J. Biochem. by J-Y Hwang (2003) - Koch, K.-W. GCAPs, the classical neuronal calcium sensors in the retina. A Ca2+- relay model of guanylate cyclase activation. Calcium Binding Proteins 1, 3–6 (2006). / Calcium Binding Proteins by K-W Koch (2006)
-
Woodruff, M. L. et al. Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J. Physiol. 542, 843–854 (2002).
(
10.1113/jphysiol.2001.013987
) / J. Physiol. by ML Woodruff (2002) -
Peshenko, I. V. & Dizhoor, A. M. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors. J. Biol. Chem. 279, 16903–16906 (2004). Reveals how the calcium sensitivity of GCAPs matches physiological concentrations only when assayed in the presence of a physiological concentration of magnesium.
(
10.1074/jbc.C400065200
) / J. Biol. Chem. by IV Peshenko (2004) -
Birnbaum, S. G. et al. Structure and function of Kv4-family transient potassium channels. Physiol. Rev. 84, 803–833 (2004).
(
10.1152/physrev.00039.2003
) / Physiol. Rev. by SG Birnbaum (2004) -
Jerng, H. H., Pfaffinger, P. J. & Covarrubias, M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol. Cell. Neurosci. 27, 343–369 (2004).
(
10.1016/j.mcn.2004.06.011
) / Mol. Cell. Neurosci. by HH Jerng (2004) -
Lauver, A. et al. Manipulating Kv4.2 identifies a specific component of hippocampal pyramidal neuron A-current that depends upon Kv4.2 expression. J. Neurochem. 99, 1207–1223 (2006).
(
10.1111/j.1471-4159.2006.04185.x
) / J. Neurochem. by A Lauver (2006) -
Bernard, C. et al. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305, 532–535 (2004).
(
10.1126/science.1097065
) / Science by C Bernard (2004) -
Hu, H.-J. et al. The Kv4.2 Potassium channel subunit is required for pain plasticity. Neuron 50, 89–100 (2006).
(
10.1016/j.neuron.2006.03.010
) / Neuron by H-J Hu (2006) -
Patel, S. P., Campbell, D. L. & Strauss, H. C. Elucidating kChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform. J. Physiol. 545, 5–11 (2002).
(
10.1113/jphysiol.2002.031856
) / J. Physiol. by SP Patel (2002) -
Kuo, H.-C. et al. A defect in the Kv channel-interacting protein 2 (KChIp2) gene leads to a complete loss of Ito and confers susceptibility to ventricular tachycardia. Cell 107, 801–813 (2001).
(
10.1016/S0092-8674(01)00588-8
) / Cell by H-C Kuo (2001) -
Decher, N., Barth, A. S., Gonzalez, T., Steinmeyer, K. & Sanguinetti, M. C. Novel KChIP2 isoforms increase functional diversity of transient outward potassium currents. J. Physiol. 557, 761–772 (2004).
(
10.1113/jphysiol.2004.066720
) / J. Physiol. by N Decher (2004) -
Shibata, R. et al. A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. J. Biol. Chem. 278, 36445–36454 (2003).
(
10.1074/jbc.M306142200
) / J. Biol. Chem. by R Shibata (2003) -
Boland, L. M. et al. Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels. Am. J. Cell Physiol. 285, C161–C170 (2003).
(
10.1152/ajpcell.00416.2002
) / Am. J. Cell Physiol. by LM Boland (2003) -
Van Hoorick, D., Raes, A., Keysers, W., Mayeur, E. & Snyders, D. J. Differential modulation of kv4 kinetics by KCHIP1 splice variants. Mol. Cell. Neurosci. 24, 357–366 (2003).
(
10.1016/S1044-7431(03)00174-X
) / Mol. Cell. Neurosci. by D Van Hoorick (2003) -
Patel, S. P., Parai, R., Parai, R. & Campbell, D. L. Regulation of Kv4.3 voltage-dependent gating kinetics by KChIP2 isoform. J. Physiol. 557, 19–41 (2004).
(
10.1113/jphysiol.2003.058172
) / J. Physiol. by SP Patel (2004) -
Deschenes, I. et al. Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac Ito? Circulation 106, 423–429 (2002).
(
10.1161/01.CIR.0000025417.65658.B6
) / Circulation by I Deschenes (2002) -
Holmqvist, M. H. et al. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc. Natl Acad. Sci. USA 99, 1035–1040 (2002).
(
10.1073/pnas.022509299
) / Proc. Natl Acad. Sci. USA by MH Holmqvist (2002) -
Kim, L. A. et al. Three-dimensional structure of Ito: Kv4.2-KChIP2 ion channels by electron microscopy at 21 A resolution. Neuron 41, 513–519 (2004).
(
10.1016/S0896-6273(04)00050-9
) / Neuron by LA Kim (2004) -
Osawa, M. et al. Calcium-regulated DNA binding and oligomerization of the neuronal calcium sensing protein, calsenilin/DREAM/KChIP3. J. Biol. Chem. 276, 41005–41013 (2001).
(
10.1074/jbc.M105842200
) / J. Biol. Chem. by M Osawa (2001) -
Savignac, M. et al. Transcriptional repressor DREAM regulates T-lymphocyte proliferation and cytokine gene expression. EMBO J. 24, 3555–3564 (2005).
(
10.1038/sj.emboj.7600810
) / EMBO J. by M Savignac (2005) -
Rhodes, K. J. et al. KChIPs and Kv4αsubunits as integral components of A-type potassium channels in mammalian brain. J. Neurosci. 24, 7903–7915 (2004). Describes the cell-type-specific expression of KChIPs1–4.
(
10.1523/JNEUROSCI.0776-04.2004
) / J. Neurosci. by KJ Rhodes (2004) -
Strassle, B. W., Menegola, M., Rhodes, K. J. & Trimmer, J. S. Light and electron microscopic analysis of KChIP and Kv4 localisation in rat cerebellar granule cells. J. Comp. Neurol. 484, 144–155 (2005).
(
10.1002/cne.20443
) / J. Comp. Neurol. by BW Strassle (2005) -
Johnson, J. D., Snyder, C., Walsh, M. & Flynn, M. Effects of myosin light chain kinase and peptides in Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin. J. Biol. Chem. 271, 761–767 (1996).
(
10.1074/jbc.271.2.761
) / J. Biol. Chem. by JD Johnson (1996) -
Shifman, J. M., Choi, M. H., Mihalas, S., Mayo, S. L. & Kennedy, M. B. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl Acad. Sci. USA 103, 13968–13973 (2006).
(
10.1073/pnas.0606433103
) / Proc. Natl Acad. Sci. USA by JM Shifman (2006) -
Persechini, A. & Cronk, B. The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. J. Biol. Chem. 274, 6827–6830 (1999).
(
10.1074/jbc.274.11.6827
) / J. Biol. Chem. by A Persechini (1999) -
Weiergraber, O. H. et al. Tuning of a neuronal calcium sensor. J. Biol. Chem. 281, 37594–375602 (2006).
(
10.1074/jbc.M603700200
) / J. Biol. Chem. by OH Weiergraber (2006) -
Schaad, N. C. et al. Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc. Natl Acad. Sci. USA 93, 9253–9258 (1996).
(
10.1073/pnas.93.17.9253
) / Proc. Natl Acad. Sci. USA by NC Schaad (1996) -
Falke, J. J., Drake, S. K., Hazard, A. L. & Peersen, O. B. Molecular tuning of ion binding to calcium signalling proteins. Quart. Rev. Biophys. 27, 219–290 (1994).
(
10.1017/S0033583500003012
) / Quart. Rev. Biophys. by JJ Falke (1994) -
Haeseleer, F. et al. Five members of a novel Ca2+ binding protein (CABP) subfamily with similarity to calmodulin. J. Biol. Chem. 275, 1247–1260 (2000).
(
10.1074/jbc.275.2.1247
) / J. Biol. Chem. by F Haeseleer (2000) -
Seidenbecher, C. I. et al. Caldendrin, a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J. Biol. Chem. 273, 21324–21331 (1998).
(
10.1074/jbc.273.33.21324
) / J. Biol. Chem. by CI Seidenbecher (1998) -
Laube, G. et al. The neuron-specific Ca2+-binding protein caldendrin: gene structure, splice isoforms, and expression in the rat central nervous system. Mol. Cell. Neurosci. 19, 459–475 (2002).
(
10.1006/mcne.2001.1078
) / Mol. Cell. Neurosci. by G Laube (2002) -
Haynes, L. P., Tepikin, A. V. & Burgoyne, R. D. Calcium Binding Protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signalling. J. Biol. Chem. 279, 547–555 (2004).
(
10.1074/jbc.M309617200
) / J. Biol. Chem. by LP Haynes (2004) -
Yang, J. et al. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc. Natl Acad. Sci. USA 99, 7711–7716 (2002).
(
10.1073/pnas.102006299
) / Proc. Natl Acad. Sci. USA by J Yang (2002) -
Kasri, N. N. et al. Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J. 23, 1–10 (2004).
(
10.1038/sj.emboj.7600037
) / EMBO J. by NN Kasri (2004) -
Zhou, H. et al. Ca2+-binding protein-1 facilitates and forms a postsynaptic complex with Cav1.2 (L-type) Ca2+ channels. J. Neurosci. 24, 4698–4708 (2004).
(
10.1523/JNEUROSCI.5523-03.2004
) / J. Neurosci. by H Zhou (2004) -
Lee, A. et al. Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nature Neurosci. 5, 210–217 (2002).
(
10.1038/nn805
) / Nature Neurosci. by A Lee (2002) -
Kinoshita-Kawada, M. et al. Inhibition of TRPC5 channels by Ca2+ binding protein 1 in Xenopus oocytes. Pflugers Arch. 450, 345–354 (2005).
(
10.1007/s00424-005-1419-1
) / Pflugers Arch. by M Kinoshita-Kawada (2005) -
Haeseleer, F. et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator in photoreceptor synaptic function. Nature Neurosci. 7, 1079–1087 (2004).
(
10.1038/nn1320
) / Nature Neurosci. by F Haeseleer (2004) -
Zeitz, C. et al. Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am. J. Hum. Genet. 79, 657–667 (2006).
(
10.1086/508067
) / Am. J. Hum. Genet. by C Zeitz (2006) -
Cox, J. A. et al. Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. J. Biol. Chem. 269, 32807–32814 (1994).
(
10.1016/S0021-9258(20)30063-6
) / J. Biol. Chem. by JA Cox (1994) -
Schlecker, C. et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J. Clin. Invest. 116, 1668–1674 (2006).
(
10.1172/JCI22466
) / J. Clin. Invest. by C Schlecker (2006) -
Guo, W., Malin, S. A., Johns, D. C., Jeromin, A. & Nerbonne, J. M. Modulation of Kv4-encoded K+ currents in the mammalian myocardium by neuronal calcium sensor-1. J. Biol. Chem. 277, 26436–26443 (2002).
(
10.1074/jbc.M201431200
) / J. Biol. Chem. by W Guo (2002) -
Nakamura, T. Y. et al. A role for frequenin, a Ca2+ binding protein, as a regulator of Kv4 K+ currents. Proc. Natl Acad. Sci. 98, 12808–12813 (2001).
(
10.1073/pnas.221168498
) / Proc. Natl Acad. Sci. by TY Nakamura (2001) -
Hui, H. et al. Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J. Physiol. 572, 165–172 (2006).
(
10.1113/jphysiol.2005.102889
) / J. Physiol. by H Hui (2006) -
Sippy, T., Cruz-Martin, A., Jeromin, A. & Schweizer, F. E. Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nature Neurosci. 6, 1031–1038 (2003).
(
10.1038/nn1117
) / Nature Neurosci. by T Sippy (2003) -
Weiss, J. L., Archer, D. A. & Burgoyne, R. D. NCS-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J. Biol. Chem. 275, 40082–40087 (2000).
(
10.1074/jbc.M008603200
) / J. Biol. Chem. by JL Weiss (2000) -
Tsujimoto, T., Jeromin, A., Satoh, N., Roder, J. C. & Takahashi, T. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium channel currents at presynaptic nerve terminals. Science 295, 2276–2279 (2002).
(
10.1126/science.1068278
) / Science by T Tsujimoto (2002) -
Koizumi, S. et al. Mechanisms underlying the neuronal calcium sensor-1 evoked enhancement of exocytosis in PC12 cells. J. Biol. Chem. 277, 30315–30324 (2002).
(
10.1074/jbc.M201132200
) / J. Biol. Chem. by S Koizumi (2002) -
Wang, C.-Y. et al. Ca2+ binding protein frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron 32, 99–112 (2001).
(
10.1016/S0896-6273(01)00434-2
) / Neuron by C-Y Wang (2001) -
Nakamura, T. Y. et al. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J. Cell Biol. 172, 1081–1091 (2006).
(
10.1083/jcb.200508156
) / J. Cell Biol. by TY Nakamura (2006) -
Mercer, W. A. et al. NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and-independent pathways. EMBO J. 19, 3597–3607 (2000).
(
10.1093/emboj/19.14.3597
) / EMBO J. by WA Mercer (2000) -
Palmer, C. L. et al. Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 47, 487–494 (2005). Implicates hippocalcin in LTD. The authors identify hippocalcin's interaction with the β2 clathrin adaptor protein and suggest that hippocalcin could be involved in the endocytosis of GluR2 AMPA receptors.
(
10.1016/j.neuron.2005.06.014
) / Neuron by CL Palmer (2005) -
Nagata, K. et al. The Map kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J. 17, 149–158 (1998).
(
10.1093/emboj/17.1.149
) / EMBO J. by K Nagata (1998) -
Oh, D.-Y., Yon, C., Oh, K.-J., Lee, K. S. & Han, J.-S. Hippocalcin increases phospholipase D2 expression through extracellular signal-regulated kinase activation and lysophosphatidic acid potentiates the hippocalcin-induced phospholipase D2 expression. J. Cell. Biochem. 97, 1052–1065 (2005).
(
10.1002/jcb.20665
) / J. Cell. Biochem. by D-Y Oh (2005) -
Kobayashi, M. et al. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory. Neuroscience 133, 471–484 (2005).
(
10.1016/j.neuroscience.2005.02.034
) / Neuroscience by M Kobayashi (2005) -
Krishnan, A., Venkataraman, V., Fik-Rymarkiewicz, E., Duda, T. & Sharma, R. K. Structural, biochemical and functional characterisation of the calcium sensor neurocalcin δ in the inner retinal neurons and its linkage with the rod outer segment membrane guanylate cyclase transduction system. Biochemistry 43, 2708–2723 (2004).
(
10.1021/bi035631v
) / Biochemistry by A Krishnan (2004) -
Brackmann, M., Schuchmann, S., Anand, R. & Braunewell, K. H. Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J. Cell Sci. 118, 2495–2505 (2005).
(
10.1242/jcs.02376
) / J. Cell Sci. by M Brackmann (2005) -
Lin, L. et al. The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the α4β2 nicotinic acetylcholine receptor. J. Biol. Chem. 277, 41872–41878 (2002).
(
10.1074/jbc.M206857200
) / J. Biol. Chem. by L Lin (2002) -
Dai, F. F. et al. The neuronal Ca2+ sensor protein visinin-like protein-1 is expressed in pancreatic islets and regulates insulin secretion. J. Biol. Chem. 281, 21942–21953 (2006).
(
10.1074/jbc.M512924200
) / J. Biol. Chem. by FF Dai (2006) -
Lautermilch, N. J., Few, A. P., Scheuer, T. & Catterall, W. A. Modulation of Cav2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J. Neurosci. 25, 7062–7070 (2005).
(
10.1523/JNEUROSCI.0447-05.2005
) / J. Neurosci. by NJ Lautermilch (2005) -
Li, H., Guo, W., Mellor, R. L. & Nerbonne, J. M. KChIP2 modulates the cell surface expression of Kv1.5-encoded K+ channels. J. Mol. Cell. Cardiol. 39, 121–132 (2005).
(
10.1016/j.yjmcc.2005.03.013
) / J. Mol. Cell. Cardiol. by H Li (2005) -
Jo, D.-G. et al. Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J. 15, 589–591 (2001).
(
10.1096/fj.00-0541fje
) / FASEB J. by D-G Jo (2001) -
Lilliehook, C. et al. Calsenilin enhances apoptosis by altering endoplasmic reticulum calcium signalling. Mol. Cell. Neurosci. 19, 552–559 (2002).
(
10.1006/mcne.2001.1096
) / Mol. Cell. Neurosci. by C Lilliehook (2002) -
Hamasaki-Katagiri, N., Molchanova, T., Takeda, K. & Ames, J. B. Fission yeast homologue of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance. J. Biol. Chem. 279, 12744–12754 (2004).
(
10.1074/jbc.M311895200
) / J. Biol. Chem. by N Hamasaki-Katagiri (2004) -
Korhonen, L. et al. Hippocalcin protects against caspase-12-induced and age-dependent neuronal degeneration. Mol. Cell. Neurosci. 28, 85–95 (2004).
(
10.1016/j.mcn.2004.08.015
) / Mol. Cell. Neurosci. by L Korhonen (2004) -
Burns, M. E., Mendez, A., Chen, J. & Baylor, D. A. Dynamics of cyclic AMP synthesis in retinal rods. Neuron 36, 81–91 (2002).
(
10.1016/S0896-6273(02)00911-X
) / Neuron by ME Burns (2002) -
Mendez, A. et al. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc. Natl Acad. Sci. USA 98, 9948–9953 (2001).
(
10.1073/pnas.171308998
) / Proc. Natl Acad. Sci. USA by A Mendez (2001) -
Payne, A. M. et al. A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum. Mol. Genet. 7, 273–277 (1998).
(
10.1093/hmg/7.2.273
) / Hum. Mol. Genet. by AM Payne (1998)
Dates
Type | When |
---|---|
Created | 18 years, 6 months ago (Feb. 20, 2007, 9:41 a.m.) |
Deposited | 2 years, 3 months ago (May 23, 2023, 1:24 p.m.) |
Indexed | 3 weeks ago (Aug. 3, 2025, 12:21 a.m.) |
Issued | 18 years, 5 months ago (March 1, 2007) |
Published | 18 years, 5 months ago (March 1, 2007) |
Published Print | 18 years, 5 months ago (March 1, 2007) |
@article{Burgoyne_2007, title={Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling}, volume={8}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn2093}, DOI={10.1038/nrn2093}, number={3}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Burgoyne, Robert D.}, year={2007}, month=mar, pages={182–193} }