Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
Bibliography

Bartos, M., Vida, I., & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8(1), 45–56.

Authors 3
  1. Marlene Bartos (first)
  2. Imre Vida (additional)
  3. Peter Jonas (additional)
References 128 Referenced 1,697
  1. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004). (10.1126/science.1099745) / Science by G Buzsáki (2004)
  2. Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989). (10.1073/pnas.86.5.1698) / Proc. Natl Acad. Sci. USA by CM Gray (1989)
  3. Ribary, U. et al. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl Acad. Sci. USA 88, 11037–11041 (1991). (10.1073/pnas.88.24.11037) / Proc. Natl Acad. Sci. USA by U Ribary (1991)
  4. Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995). (10.1038/376033a0) / Nature by JJ Hopfield (1995)
  5. Buzsáki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995). (10.1016/0959-4388(95)80012-3) / Curr. Opin. Neurobiol. by G Buzsáki (1995)
  6. Lisman, J. E. & Idiart, M. A. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995). (10.1126/science.7878473) / Science by JE Lisman (1995)
  7. Lisman, J. E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999). (10.1016/S0896-6273(00)81085-5) / Neuron by JE Lisman (1999)
  8. Spencer, K. M. et al. Abnormal neural synchrony in schizophrenia. J. Neurosci. 23, 7407–7411 (2003). (10.1523/JNEUROSCI.23-19-07407.2003) / J. Neurosci. by KM Spencer (2003)
  9. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005). (10.1038/nrn1648) / Nature Rev. Neurosci. by DA Lewis (2005)
  10. Soltesz, I. & Deschênes, M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70, 97–116 (1993). (10.1152/jn.1993.70.1.97) / J. Neurophysiol. by I Soltesz (1993)
  11. Buzsáki, G., Leung, L. S. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 6, 139–171 (1983). (10.1016/0165-0173(83)90037-1) / Brain Res. Rev. by G Buzsáki (1983)
  12. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995). A key paper that analyses the properties of hippocampal gamma oscillations in vivo in the non-anesthetized rat. Gamma oscillations occur in all subfields, with the highest power in the dentate gyrus. (10.1523/JNEUROSCI.15-01-00047.1995) / J. Neurosci. by A Bragin (1995)
  13. Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsáki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003). Shows directly that there are two gamma oscillators in the hippocampus in vivo , one in the dentate gyrus and one in the CA3–CA1 region. The coupling strength between the two oscillators varies during both theta and non-theta states. (10.1016/S0896-6273(02)01169-8) / Neuron by J Csicsvari (2003)
  14. Förster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nature Rev. Neurosci. 7, 259–267 (2006). (10.1038/nrn1882) / Nature Rev. Neurosci. by E Förster (2006)
  15. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993). (10.1002/hipo.450030307) / Hippocampus by J O'Keefe (1993)
  16. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996). (10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K) / Hippocampus by WE Skaggs (1996)
  17. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995). The first paper to demonstrate that gamma oscillations are generated in pharmacologically isolated networks of inhibitory interneurons in the presence of a tonic excitatory drive (activation of mGluRs after tetanic stimulation). (10.1038/373612a0) / Nature by MA Whittington (1995)
  18. Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998). (10.1038/28179) / Nature by A Fisahn (1998)
  19. Fellous, J. M. & Sejnowski, T. J. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus 10, 187–197 (2000). (10.1002/(SICI)1098-1063(2000)10:2<187::AID-HIPO8>3.0.CO;2-M) / Hippocampus by JM Fellous (2000)
  20. Hájos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000). (10.1046/j.1460-9568.2000.00217.x) / Eur. J. Neurosci. by N Hájos (2000)
  21. Fisahn, A. et al. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J. Neurosci. 24, 9658–9668 (2004). Highly detailed analysis of the cellular and molecular mechanisms of kainate-induced gamma oscillations in the hippocampal CA3 region. (10.1523/JNEUROSCI.2973-04.2004) / J. Neurosci. by A Fisahn (2004)
  22. LeBeau, F. E. N., Towers, S. K., Traub, R. D., Whittington, M. A. & Buhl, E. H. Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. J. Physiol. (Lond.) 542, 167–179 (2002). (10.1113/jphysiol.2002.015933) / J. Physiol. (Lond.) by FEN LeBeau (2002)
  23. Mann, E. O., Suckling, J. M., Hajos, N., Greenfield, S. A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005). (10.1016/j.neuron.2004.12.016) / Neuron by EO Mann (2005)
  24. Towers, S. K. et al. Fast network oscillations in the rat dentate gyrus in vitro. J. Neurophysiol. 87, 1165–1168 (2002). (10.1152/jn.00495.2001) / J. Neurophysiol. by SK Towers (2002)
  25. Pöschel, B., Draguhn, A. & Heinemann, U. Glutamate-induced gamma oscillations in the dentate gyrus of rat hippocampal slices. Brain Res. 938, 22–28 (2002). (10.1016/S0006-8993(02)02477-0) / Brain Res. by B Pöschel (2002)
  26. Cunningham, M. O., Davies, C. H., Buhl, E. H., Kopell, N. & Whittington, M. A. Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J. Neurosci. 23, 9761–9769 (2003). (10.1523/JNEUROSCI.23-30-09761.2003) / J. Neurosci. by MO Cunningham (2003)
  27. Buhl, E. H., Tamás, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. (Lond.) 513, 117–126 (1998). (10.1111/j.1469-7793.1998.117by.x) / J. Physiol. (Lond.) by EH Buhl (1998)
  28. Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G. & Jefferys, J. G. R. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. (Lond.) 493, 471–484 (1996). (10.1113/jphysiol.1996.sp021397) / J. Physiol. (Lond.) by RD Traub (1996)
  29. McBain, C. J., DiChiara, T. J. & Kauer, J. A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445 (1994). (10.1523/JNEUROSCI.14-07-04433.1994) / J. Neurosci. by CJ McBain (1994)
  30. van Hooft, J. A., Giuffrida, R., Blatow, M. & Monyer, H. Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons. J. Neurosci. 20, 3544–3551 (2000). (10.1523/JNEUROSCI.20-10-03544.2000) / J. Neurosci. by JA van Hooft (2000)
  31. Fisahn, A. et al. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33, 615–624 (2002). (10.1016/S0896-6273(02)00587-1) / Neuron by A Fisahn (2002)
  32. Traub, R. D. et al. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12, 4093–4106 (2000). Principal neuron–interneuron model of carbachol-induced gamma oscillations in the CA3 region. In this model, spontaneous EPSCs at principal neuron–interneuron synapses, generated by ectopic action potentials in a network of gap-junction coupled principal neuron axons, have a crucial role. (10.1046/j.1460-9568.2000.00300.x) / Eur. J. Neurosci. by RD Traub (2000)
  33. Traub, R. D. et al. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21, 9478–9486 (2001). (10.1523/JNEUROSCI.21-23-09478.2001) / J. Neurosci. by RD Traub (2001)
  34. Hormuzdi, S. G. et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31, 487–495 (2001). (10.1016/S0896-6273(01)00387-7) / Neuron by SG Hormuzdi (2001)
  35. Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H. & Buzsáki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J. Neurosci. 23, 1013–1018 (2003). (10.1523/JNEUROSCI.23-03-01013.2003) / J. Neurosci. by DL Buhl (2003)
  36. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994). (10.1038/368823a0) / Nature by EH Buhl (1994)
  37. Pawelzik, H., Hughes, D. I. & Thomson, A. M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002). (10.1002/cne.10118) / J. Comp. Neurol. by H Pawelzik (2002)
  38. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996). An exhaustive review of both morphological and functional properties of GABA-containing interneurons in the hippocampus. (10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I) / Hippocampus by TF Freund (1996)
  39. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005). (10.1113/jphysiol.2004.078915) / J. Physiol. (Lond.) by P Somogyi (2005)
  40. Kawaguchi, Y. & Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997). (10.1093/cercor/7.6.476) / Cereb. Cortex by Y Kawaguchi (1997)
  41. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000). (10.1126/science.287.5451.273) / Science by A Gupta (2000)
  42. Soltesz, I. Diversity in the Neuronal Machine (Oxford Univ. Press, Oxford, 2006). (10.1093/acprof:oso/9780195177015.001.1) / Diversity in the Neuronal Machine by I Soltesz (2006)
  43. Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res. 416, 369–374 (1987). (10.1016/0006-8993(87)90921-8) / Brain Res. by Y Kawaguchi (1987)
  44. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995). (10.1523/JNEUROSCI.15-10-06651.1995) / J. Neurosci. by A Sik (1995)
  45. Kisvárday, Z. F., Beaulieu, C. & Eysel, U. T. Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J. Comp. Neurol. 327, 398–415 (1993). (10.1002/cne.903270307) / J. Comp. Neurol. by ZF Kisvárday (1993)
  46. Gulyás, A. I., Megias, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999). (10.1523/JNEUROSCI.19-22-10082.1999) / J. Neurosci. by AI Gulyás (1999)
  47. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995). (10.1038/378075a0) / Nature by SR Cobb (1995)
  48. Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. (Lond.) 543, 779–793 (2002). (10.1113/jphysiol.2002.024588) / J. Physiol. (Lond.) by MJ Gillies (2002)
  49. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron Diversity series: Fast in, fast out — temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004). (10.1016/j.tins.2003.10.010) / Trends Neurosci. by P Jonas (2004)
  50. Pike, F. G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. (Lond.) 529, 205–213 (2000). (10.1111/j.1469-7793.2000.00205.x) / J. Physiol. (Lond.) by FG Pike (2000)
  51. Penttonen, M., Kamondi, A., Acsády, L. & Buzsáki, G. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur. J. Neurosci. 10, 718–728 (1998). (10.1046/j.1460-9568.1998.00096.x) / Eur. J. Neurosci. by M Penttonen (1998)
  52. Hájos, N. et al. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137 (2004). Whole-cell recording from identified interneuron types during carbachol-induced gamma oscillations in the CA3 subfield in vitro . Various types of interneuron (for example, basket cells and oriens alveus–lacunosum moleculare interneurons) fire at different frequencies and phases. (10.1523/JNEUROSCI.2113-04.2004) / J. Neurosci. by N Hájos (2004)
  53. Gloveli, T. et al. Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J. Physiol. (Lond.) 562, 131–147 (2005). Whole-cell recording from identified interneuron types during kainate-induced gamma oscillations in the hippocampal CA3 region in vitro . Basket cells fire, on average, 1.2 action potentials per gamma cycle. (10.1113/jphysiol.2004.073007) / J. Physiol. (Lond.) by T Gloveli (2005)
  54. Freund, T. F. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003). (10.1016/S0166-2236(03)00227-3) / Trends Neurosci. by TF Freund (2003)
  55. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nature Neurosci. 8, 1319–1328 (2005). (10.1038/nn1542) / Nature Neurosci. by S Hefft (2005)
  56. Christen, M. Build it, and you understand it. Bioworld 7, 6–8 (2002). / Bioworld by M Christen (2002)
  57. Wang, X.-J. & Rinzel, J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992). (10.1162/neco.1992.4.1.84) / Neural Comput. by X-J Wang (1992)
  58. Hansel, D., Mato, G. & Meunier, C. Phase reduction and neuronal modeling. Concepts Neurosci. 4, 193–210 (1993). / Concepts Neurosci. by D Hansel (1993)
  59. van Vreeswijk, C., Abbott, L. F. & Ermentrout, G. B. When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci. 1, 313–321 (1994). A key paper demonstrating that synaptic inhibition rather than excitation leads to synchronized activity in a two-neuron system if the rise time of synaptic events is longer than the duration of action potentials. (10.1007/BF00961879) / J. Comp. Neurosci. by C van Vreeswijk (1994)
  60. White, J. A., Chow, C. C., Ritt, J., Soto-Treviño, C. & Kopell, N. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5, 5–16 (1998). (10.1023/A:1008841325921) / J. Comput. Neurosci. by JA White (1998)
  61. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci. 23, 6280–6294 (2003). (10.1523/JNEUROSCI.23-15-06280.2003) / J. Neurosci. by B Pfeuty (2003)
  62. Stiefel, K. M., Wespatat, V., Gutkin, B., Tennigkeit, F. & Singer, W. Phase dependent sign changes of GABAergic synaptic input explored in-silicio and in-vitro. J. Comput. Neurosci. 19, 71–85 (2005). (10.1007/s10827-005-0188-3) / J. Comput. Neurosci. by KM Stiefel (2005)
  63. Koch, C. Biophysics of Computation (Oxford Univ. Press, Oxford, 1999). / Biophysics of Computation by C Koch (1999)
  64. Mirollo, R. E. & Strogatz, S. H. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 6, 1645–1662 (1990). (10.1137/0150098) / SIAM J. Appl. Math. by RE Mirollo (1990)
  65. Wang, X.-J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996). A landmark modelling study that systematically examines the conditions under which coherent gamma oscillations are generated in interneuron networks. (10.1523/JNEUROSCI.16-20-06402.1996) / J. Neurosci. by X-J Wang (1996)
  66. Tiesinga, P. H. E. & José, J. V. Robust gamma oscillations in networks of inhibitory hippocampal interneurons. Network Comput. Neural. Syst. 11, 1–23 (2000). (10.1088/0954-898X_11_1_301) / Network Comput. Neural. Syst. by PHE Tiesinga (2000)
  67. Maex, R. & de Schutter, E. Resonant synchronization in heterogeneous networks of inhibitory neurons. J. Neurosci. 23, 10503–10514 (2003). Emphasizes the importance of delays (conduction and synaptic) for synchronization in interneuron network models. (10.1523/JNEUROSCI.23-33-10503.2003) / J. Neurosci. by R Maex (2003)
  68. Vida, I., Bartos, M. & Jonas, P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107–117 (2006). (10.1016/j.neuron.2005.11.036) / Neuron by I Vida (2006)
  69. Ermentrout, B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996). (10.1162/neco.1996.8.5.979) / Neural Comput. by B Ermentrout (1996)
  70. Parra, P., Gulyás, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998). (10.1016/S0896-6273(00)80479-1) / Neuron by P Parra (1998)
  71. Neltner, L., Hansel, D., Mato, G. & Meunier, C. Synchrony in heterogeneous networks of spiking neurons. Neural Comput. 12, 1607–1641 (2000). (10.1162/089976600300015286) / Neural Comput. by L Neltner (2000)
  72. Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999). Shows that weak stochastic synchronization occurs in inhibitory interneuron networks if strong coupling is combined with noise. Weak stochastic synchronization differs from strong synchronization in its lower sensitivity to heterogeneities. (10.1162/089976699300016179) / Neural Comput. by N Brunel (1999)
  73. Brunel, N. & Hansel, D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 18, 1066–1110 (2006). (10.1162/neco.2006.18.5.1066) / Neural Comput. by N Brunel (2006)
  74. Cobb, S. R. et al. Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79, 629–648 (1997). (10.1016/S0306-4522(97)00055-9) / Neuroscience by SR Cobb (1997)
  75. Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P. & Jonas, P. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–2698 (2001). (10.1523/JNEUROSCI.21-08-02687.2001) / J. Neurosci. by M Bartos (2001)
  76. Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl Acad. Sci. USA 99, 13222–13227 (2002). (10.1073/pnas.192233099) / Proc. Natl Acad. Sci. USA by M Bartos (2002)
  77. Tamás, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998). (10.1523/JNEUROSCI.18-11-04255.1998) / J. Neurosci. by G Tamás (1998)
  78. Tamás, G., Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000). (10.1038/73936) / Nature Neurosci. by G Tamás (2000)
  79. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999). (10.1038/47029) / Nature by M Galarreta (1999)
  80. Galarreta, M. & Hestrin, S. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc. Natl Acad. Sci. USA 99, 12438–12443 (2002). Demonstrates fast inhibition at GABA synapses between fast-spiking, parvalbumin-expressing interneurons in the neocortex. Together with similar results obtained in the hippocampus, these results suggest that fast inhibition at basket cell–basket cell synapses is a general phenomenon occurring throughout the cortex. (10.1073/pnas.192159599) / Proc. Natl Acad. Sci. USA by M Galarreta (2002)
  81. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron–principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000). (10.1523/JNEUROSCI.20-15-05594.2000) / J. Neurosci. by U Kraushaar (2000)
  82. Klausberger, T., Roberts, J. D. B. & Somogyi, P. Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J. Neurosci. 22, 2513–2521 (2002). (10.1523/JNEUROSCI.22-07-02513.2002) / J. Neurosci. by T Klausberger (2002)
  83. Hefft, S., Kraushaar, U., Geiger, J. R. P. & Jonas, P. Presynaptic short-term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus. J. Physiol. (Lond.) 539, 201–208 (2002). (10.1113/jphysiol.2001.013455) / J. Physiol. (Lond.) by S Hefft (2002)
  84. Alger, B. E. & Nicoll, R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature 281, 315–317 (1979). (10.1038/281315a0) / Nature by BE Alger (1979)
  85. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A. & Laursen, A. M. Two different responses of hippocampal pyramidal cells to application of γ-amino butyric acid. J. Physiol. (Lond.) 305, 279–296 (1980). (10.1113/jphysiol.1980.sp013363) / J. Physiol. (Lond.) by P Andersen (1980)
  86. Martina, M., Royer, S. & Paré, D. Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J. Neurophysiol. 86, 2887–2895 (2001). (10.1152/jn.2001.86.6.2887) / J. Neurophysiol. by M Martina (2001)
  87. Chavas, J. & Marty, A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J. Neurosci. 23, 2019–2031 (2003). (10.1523/JNEUROSCI.23-06-02019.2003) / J. Neurosci. by J Chavas (2003)
  88. Woodin, M. A., Ganguly, K. & Poo, M.-M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39, 807–820 (2003). (10.1016/S0896-6273(03)00507-5) / Neuron by MA Woodin (2003)
  89. Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region). Exp. Brain Res. 72, 363–370 (1988). / Exp. Brain Res. by H Katsumaru (1988)
  90. Fukuda, T., Kosaka, T., Singer, W. & Galuske, R. A. W. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26, 3434–3443 (2006). (10.1523/JNEUROSCI.4076-05.2006) / J. Neurosci. by T Fukuda (2006)
  91. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999). (10.1038/47035) / Nature by JR Gibson (1999)
  92. Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004). (10.1016/S0896-6273(04)00043-1) / Neuron by MV Bennett (2004)
  93. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001). (10.1016/S0896-6273(01)00410-X) / Neuron by D Schmitz (2001)
  94. Meyer, A. H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002). (10.1523/JNEUROSCI.22-16-07055.2002) / J. Neurosci. by AH Meyer (2002)
  95. Deans, M. R., Gibson J. R., Sellitto, C., Connors, B. W. & Paul, D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001). (10.1016/S0896-6273(01)00373-7) / Neuron by MR Deans (2001)
  96. Geiger, J. R. P., Lübke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron–interneuron synapse. Neuron 18, 1009–1023 (1997). (10.1016/S0896-6273(00)80339-6) / Neuron by JRP Geiger (1997)
  97. Miles, R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J. Physiol. (Lond.) 428, 61–77 (1990). The first paper to show fast and strong synaptic excitation of interneurons by pyramidal cells. (10.1113/jphysiol.1990.sp018200) / J. Physiol. (Lond.) by R Miles (1990)
  98. Gulyás, A. I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993). (10.1038/366683a0) / Nature by AI Gulyás (1993)
  99. Ali, A. B., Deuchars, J., Pawelzik, H. & Thomson, A. M. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J. Physiol. (Lond.) 507, 201–217 (1998). (10.1111/j.1469-7793.1998.201bu.x) / J. Physiol. (Lond.) by AB Ali (1998)
  100. Biro, A. A., Holderith, N. B. & Nusser, Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J. Neurosci. 25, 223–232 (2005). (10.1523/JNEUROSCI.3688-04.2005) / J. Neurosci. by AA Biro (2005)
  101. Buhl, E. H. et al. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J. Physiol. (Lond.) 500, 689–713 (1997). (10.1113/jphysiol.1997.sp022053) / J. Physiol. (Lond.) by EH Buhl (1997)
  102. Angulo, M. C., Staiger, J. F., Rossier, J. & Audinat, E. Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection. J. Neurosci. 19, 1566–1576 (1999). (10.1523/JNEUROSCI.19-05-01566.1999) / J. Neurosci. by MC Angulo (1999)
  103. Galarreta, M. & Hestrin, S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001). (10.1126/science.1061395) / Science by M Galarreta (2001)
  104. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995). (10.1016/0896-6273(95)90076-4) / Neuron by JRP Geiger (1995)
  105. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993). (10.1113/jphysiol.1993.sp019965) / J. Physiol. (Lond.) by P Jonas (1993)
  106. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998). (10.1016/S0896-6273(00)80565-6) / Neuron by Z Nusser (1998)
  107. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. The combined effects of inhibitory and electrical synapses in synchrony. Neural Comput. 17, 633–670 (2005). (10.1162/0899766053019917) / Neural Comput. by B Pfeuty (2005)
  108. Kopell, N. & Ermentrout, B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl Acad. Sci. USA 101, 15482–15487 (2004). Shows that gap junctions complement inhibitory synapses in the generation of oscillations by permitting the propagation of both suprathreshold and subthreshold potentials. (10.1073/pnas.0406343101) / Proc. Natl Acad. Sci. USA by N Kopell (2004)
  109. Whittington, M. A. & Traub, R. D. Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676–682 (2003). (10.1016/j.tins.2003.09.016) / Trends Neurosci. by MA Whittington (2003)
  110. Brunel, N. & Wang, X.-J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003). Simulates the oscillatory activity of a principal neuron–interneuron network in the weak stochastic synchronization regime. The study emphasizes the importance of delays in setting network frequency. (10.1152/jn.01095.2002) / J. Neurophysiol. by N Brunel (2003)
  111. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996). (10.1038/383621a0) / Nature by RD Traub (1996)
  112. Pearce, R. A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200 (1993). (10.1016/0896-6273(93)90310-N) / Neuron by RA Pearce (1993)
  113. White, J. A., Banks, M. I., Pearce, R. A. & Kopell, N. J. Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma–theta rhythm. Proc. Natl Acad. Sci. USA 97, 8128–8133 (2000). (10.1073/pnas.100124097) / Proc. Natl Acad. Sci. USA by JA White (2000)
  114. Lee, A. K., Manns, I. D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006). (10.1016/j.neuron.2006.07.004) / Neuron by AK Lee (2006)
  115. Wulff, P. & Wisden W. Dissecting neural circuitry by combining genetics and pharmacology. Trends Neurosci. 28, 44–50 (2005). (10.1016/j.tins.2004.11.004) / Trends Neurosci. by P Wulff (2005)
  116. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004). (10.1038/nn1233) / Nature Neurosci. by G Buzsáki (2004)
  117. Traub, R. D. et al. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194–2232 (2005). (10.1152/jn.00983.2004) / J. Neurophysiol. by RD Traub (2005)
  118. Buzsáki, G., Geisler, C., Henze, D. A. & Wang, X.-J. Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004). (10.1016/j.tins.2004.02.007) / Trends Neurosci. by G Buzsáki (2004)
  119. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001). (10.1038/35065725) / Nature by SH Strogatz (2001)
  120. Sik, A., Ylinen, A., Penttonen, M. & Buzsáki, G. Inhibitory CA1–CA3–hilar region feedback in the hippocampus. Science 265, 1722–1724 (1994). (10.1126/science.8085161) / Science by A Sik (1994)
  121. Ceranik, K. et al. A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J. Neurosci. 17, 5380–5394 (1997). (10.1523/JNEUROSCI.17-14-05380.1997) / J. Neurosci. by K Ceranik (1997)
  122. Vida, I., Halasy, K., Szinyei, C., Somogyi, P. & Buhl, E. H. Unitary IPSPs evoked by interneurons at the stratum radiatum–stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J. Physiol. (Lond.) 506, 755–773 (1998). (10.1111/j.1469-7793.1998.755bv.x) / J. Physiol. (Lond.) by I Vida (1998)
  123. Ernst, U., Pawelzik, K. & Geisel, T. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74, 1570–1573 (1995). (10.1103/PhysRevLett.74.1570) / Phys. Rev. Lett. by U Ernst (1995)
  124. Gulledge, A. T. & Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003). (10.1016/S0896-6273(02)01146-7) / Neuron by AT Gulledge (2003)
  125. Kaila, K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489–537 (1994). (10.1016/0301-0082(94)90049-3) / Prog. Neurobiol. by K Kaila (1994)
  126. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002). (10.1038/nrn920) / Nature Rev. Neurosci. by Y Ben-Ari (2002)
  127. Banke, T. G. & McBain, C. J. GABAergic input onto CA3 hippocampal interneurons remains shunting throughout development. J. Neurosci. 26, 11720–11725 (2006). (10.1523/JNEUROSCI.2887-06.2006) / J. Neurosci. by TG Banke (2006)
  128. Gao, B. & Fritschy, J. M. Selective allocation of GABAA receptors containing the α1 subunit to neurochemically distinct subpopulations of rat hippocampal interneurons. Eur. J. Neurosci. 6, 837–853 (1994). (10.1111/j.1460-9568.1994.tb00994.x) / Eur. J. Neurosci. by B Gao (1994)
Dates
Type When
Created 18 years, 8 months ago (Dec. 20, 2006, 6:19 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:08 a.m.)
Indexed 1 day, 8 hours ago (Sept. 4, 2025, 10:13 a.m.)
Issued 18 years, 8 months ago (Jan. 1, 2007)
Published 18 years, 8 months ago (Jan. 1, 2007)
Published Print 18 years, 8 months ago (Jan. 1, 2007)
Funders 0

None

@article{Bartos_2007, title={Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks}, volume={8}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn2044}, DOI={10.1038/nrn2044}, number={1}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Bartos, Marlene and Vida, Imre and Jonas, Peter}, year={2007}, month=jan, pages={45–56} }