Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
Bibliography

Ziv, N. E., & Garner, C. C. (2004). Cellular and molecular mechanisms of presynaptic assembly. Nature Reviews Neuroscience, 5(5), 385–399.

Authors 2
  1. Noam E. Ziv (first)
  2. Craig C. Garner (additional)
References 202 Referenced 240
  1. Palay, S. L. Synapses in the central nervous system. J. Biophys. Biochem. Cyto. 2, 193–202 (1956). (10.1083/jcb.2.4.193) / J. Biophys. Biochem. Cyto. by SL Palay (1956)
  2. Gray, E. G. Electron microscopy of presynaptic organelles of the spinal cord. J. Anat. 97, 101–106 (1963). / J. Anat. by EG Gray (1963)
  3. Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201–209 (1988). (10.1016/0896-6273(88)90140-7) / Neuron by DM Landis (1988)
  4. Hirokawa, N., Sobue, K., Kanda, K., Harada, A. & Yorifuji, H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 108, 111–126 (1989). (10.1083/jcb.108.1.111) / J. Cell Biol. by N Hirokawa (1989)
  5. Landis, D. M. Membrane and cytoplasmic structure at synaptic junctions in the mammalian central nervous system. J. Electron Microsc. Tech. 10, 129–151 (1988). (10.1002/jemt.1060100203) / J. Electron Microsc. Tech. by DM Landis (1988)
  6. Burns, M. E. & Augustine, G. J. Synaptic structure and function: dynamic organization yields architectural precision. Cell 83, 187–194 (1995). (10.1016/0092-8674(95)90160-4) / Cell by ME Burns (1995)
  7. Zampighi, G. A. & Fisher, R. S. Polyhedral protein cages encase synaptic vesicles and participate in their attachment to the active zone. J. Struct. Biol. 119, 347–359 (1997). (10.1006/jsbi.1997.3882) / J. Struct. Biol. by GA Zampighi (1997)
  8. Phillips, G. R. et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32, 63–77 (2001). (10.1016/S0896-6273(01)00450-0) / Neuron by GR Phillips (2001)
  9. Burden, S. J. Building the vertebrate neuromuscular synapse. J. Neurobiol. 53, 501–511 (2002). (10.1002/neu.10137) / J. Neurobiol. by SJ Burden (2002)
  10. Garner, C. C., Zhai, R. G., Gundelfinger, E. D. & Ziv, N. E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251 (2002). (10.1016/S0166-2236(02)02152-5) / Trends Neurosci. by CC Garner (2002)
  11. Broadie, K. S. & Richmond, J. E. Establishing and sculpting the synapse in Drosophila and C. elegans. Curr. Opin. Neurobiol. 12, 491–498 (2002). (10.1016/S0959-4388(02)00359-8) / Curr. Opin. Neurobiol. by KS Broadie (2002)
  12. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, 1969). / The Release of Neural Transmitter Substances by B Katz (1969)
  13. Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure of the Nervous System (Oxford Univ. Press. Oxford, 1991). / The Fine Structure of the Nervous System by A Peters (1991)
  14. Jin, Y. Synaptogenesis: insights from worm and fly. Curr. Opin. Neurobiol. 12, 71–79 (2002). (10.1016/S0959-4388(02)00292-1) / Curr. Opin. Neurobiol. by Y Jin (2002)
  15. Ryan, T. A. Presynaptic imaging techniques. Curr. Opin. Neurobiol. 11, 544–549 (2001). (10.1016/S0959-4388(00)00247-6) / Curr. Opin. Neurobiol. by TA Ryan (2001)
  16. Jahn, R., Lang, T. & Sudhof, T. C. Membrane fusion. Cell 112, 519–533 (2003). (10.1016/S0092-8674(03)00112-0) / Cell by R Jahn (2003)
  17. Dresbach, T., Qualmann, B., Kessels, M. M., Garner, C. C. & Gundelfinger, E. D. The presynaptic cytomatrix of brain synapses. Cell. Mol. Life Sci. 58, 94–116 (2001). (10.1007/PL00000781) / Cell. Mol. Life Sci. by T Dresbach (2001)
  18. Jarousse, N. & Kelly, R. B. Endocytotic mechanisms in synapses. Curr. Opin. Cell Biol. 13, 461–469 (2001). (10.1016/S0955-0674(00)00237-4) / Curr. Opin. Cell Biol. by N Jarousse (2001)
  19. Richmond, J. E. & Broadie, K. S. The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr. Opin. Neurobiol. 12, 499–507 (2002). (10.1016/S0959-4388(02)00360-4) / Curr. Opin. Neurobiol. by JE Richmond (2002)
  20. Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003). (10.1146/annurev.neuro.26.041002.131445) / Annu. Rev. Neurosci. by VN Murthy (2003)
  21. Gundelfinger, E. D., Kessels, M. M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol. 4, 127–139 ( 2003). (10.1038/nrm1016) / Nature Rev. Mol. Cell Biol. by ED Gundelfinger (2003)
  22. Aravanis, A. M., Pyle, J. L. & Tsien, R. W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003). (10.1038/nature01686) / Nature by AM Aravanis (2003)
  23. Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003). (10.1038/nature01677) / Nature by SP Gandhi (2003)
  24. Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981). (10.1083/jcb.88.3.564) / J. Cell Biol. by JE Heuser (1981)
  25. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999). (10.1146/annurev.neuro.22.1.389) / Annu. Rev. Neurosci. by JR Sanes (1999)
  26. Young, S. H. & Poo, M. M. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305, 634–637 (1983). (10.1038/305634a0) / Nature by SH Young (1983)
  27. Hume, R. I., Role, L. W. & Fischbach, G. D. Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature 305, 632–634 (1983). References 26 and 27 show that growth cones secrete neurotransmitter before they make contact with targets. (10.1038/305632a0) / Nature by RI Hume (1983)
  28. Haydon, P. G. & Zoran, M. J. Formation and modulation of chemical connections: evoked acetylcholine release from growth cones and neurites of specific identified neurons. Neuron 2, 1483–1490 (1989). (10.1016/0896-6273(89)90194-3) / Neuron by PG Haydon (1989)
  29. Yao, W. D., Rusch, J., Poo, M. & Wu, C. F. Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP-pathway mutations. J. Neurosci. 20, 2626–2637 (2000). (10.1523/JNEUROSCI.20-07-02626.2000) / J. Neurosci. by WD Yao (2000)
  30. Diefenbach, T. J., Guthrie, P. B., Stier, H., Billups, B. & Kater, S. B. Membrane recycling in the neuronal growth cone revealed by FM1-43 labeling. J. Neurosci. 19, 9436–9444 (1999). (10.1523/JNEUROSCI.19-21-09436.1999) / J. Neurosci. by TJ Diefenbach (1999)
  31. Liou, J. C., Chen, Y. H. & Fu, W. M. Target-dependent regulation of acetylcholine secretion at developing motoneurons in Xenopus cell cultures. J. Physiol. (Lond.) 517, 721–730 (1999). (10.1111/j.1469-7793.1999.0721s.x) / J. Physiol. (Lond.) by JC Liou (1999)
  32. Jontes, J. D., Buchanan, J. & Smith, S. J. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nature Neurosci. 3, 231–237 (2000). (10.1038/72936) / Nature Neurosci. by JD Jontes (2000)
  33. Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000). This study demonstrates that nascent presynaptic boutons contain clusters of tubulovesicular, pleomorphic and dense-core vesicles (see Fig. 1). (10.1038/74814) / Nature Neurosci. by SE Ahmari (2000)
  34. Friedman, H. V., Bresler, T., Garner, C. C. & Ziv, N. E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000). These data show that functional active zone formation can be rapid, occurring within less than 30 minutes of initial axo-dendritic contact. (10.1016/S0896-6273(00)00009-X) / Neuron by HV Friedman (2000)
  35. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nature Neurosci. 4, 1093–1101 (2001). (10.1038/nn735) / Nature Neurosci. by B Alsina (2001)
  36. Sun, Y. A. & Poo, M. M. Evoked release of acetylcholine from the growing embryonic neuron. Proc. Natl Acad Sci. USA 84, 2540–2544 (1987). (10.1073/pnas.84.8.2540) / Proc. Natl Acad Sci. USA by YA Sun (1987)
  37. Matteoli, M., Takei, K., Perin, M. S., Sudhof, T. C. & De Camilli, P. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J. Cell Biol. 117, 849–861 (1992). (10.1083/jcb.117.4.849) / J. Cell Biol. by M Matteoli (1992)
  38. Kraszewski, K. et al. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci. 15, 4328–4342 (1995). (10.1523/JNEUROSCI.15-06-04328.1995) / J. Neurosci. by K Kraszewski (1995)
  39. Dai, Z. & Peng, H. B. Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis. Mol. Cell. Neurosci. 7, 443–452 (1996). (10.1006/mcne.1996.0032) / Mol. Cell. Neurosci. by Z Dai (1996)
  40. Antonov, I., Chang, S., Zakharenko, S. & Popov, S. V. Distribution of neurotransmitter secretion in growing axons. Neuroscience 90, 975–984 (1999). (10.1016/S0306-4522(98)00497-7) / Neuroscience by I Antonov (1999)
  41. Zakharenko, S., Chang, S., O'Donoghue, M. & Popov, S. V. Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J. Cell Biol. 144, 507–518 (1999). References 37–41 describe the ability of synaptic vesicles to recycle along the length of developing axons. (10.1083/jcb.144.3.507) / J. Cell Biol. by S Zakharenko (1999)
  42. Krueger, S. R., Kolar, A. & Fitzsimonds, R. M. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 40, 945–957 (2003). Data indicate that functional 'orphan' active zones can exist in culture without a postsynaptic partner. (10.1016/S0896-6273(03)00729-3) / Neuron by SR Krueger (2003)
  43. Galli, T., Garcia, E. P., Mundigl, O., Chilcote, T. J. & De Camilli, P. v- and t-SNAREs in neuronal exocytosis: a need for additional components to define sites of release. Neuropharmacology 34, 1351–1360 (1995). (10.1016/0028-3908(95)00113-K) / Neuropharmacology by T Galli (1995)
  44. Garcia, E. P., McPherson, P. S., Chilcote, T. J., Takei, K. & De Camilli, P. rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol. 129, 105–120 (1995). (10.1083/jcb.129.1.105) / J. Cell Biol. by EP Garcia (1995)
  45. Burry, R. W. Presynaptic elements on artificial surfaces. A model for the study of development and regeneration of synapses. Neurochem. Pathol. 5, 345–360 (1986). (10.1007/BF02842943) / Neurochem. Pathol. by RW Burry (1986)
  46. Anderson, M. J., Champaneria, S. & Swenarchuk, L. E. Synaptic differentiation can be evoked by polymer microbeads that mimic localized pericellular proteolysis by removing proteins from adjacent surfaces. Dev. Biol. 147, 464–479 (1991). (10.1016/0012-1606(91)90305-M) / Dev. Biol. by MJ Anderson (1991)
  47. Dai, Z. & Peng, H. B. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J. Neurosci. 15, 5466–5475 (1995). (10.1523/JNEUROSCI.15-08-05466.1995) / J. Neurosci. by Z Dai (1995)
  48. Peng, H. B., Markey, D. R., Muhlach, W. L. & Pollack, E. D. Development of presynaptic specializations induced by basic polypeptide-coated latex beads in spinal cord cultures. Synapse 1, 10–19 (1987). (10.1002/syn.890010104) / Synapse by HB Peng (1987)
  49. DiGregorio, D. A., Negrete, O., Jeromin, A., Peng, H. B. & Vergara, J. L. Contact-dependent aggregation of functional Ca2+ channels, synaptic vesicles and postsynaptic receptors in active zones of a neuromuscular junction. Eur. J. Neurosci. 14, 533–546 (2001). (10.1046/j.0953-816x.2001.01670.x) / Eur. J. Neurosci. by DA DiGregorio (2001)
  50. Chow, I. & Poo, M. M. Release of acetylcholine from embryonic neurons upon contact with muscle cell. J. Neurosci. 5, 1076–1082 (1985). (10.1523/JNEUROSCI.05-04-01076.1985) / J. Neurosci. by I Chow (1985)
  51. Vaughn, J. E. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285 (1989). An excellent review of the morphological changes that occur during nascent synapse formation. It also provides insightful suggestions as to mechanisms of synaptogenesis. (10.1002/syn.890030312) / Synapse by JE Vaughn (1989)
  52. Jontes, J. D. & Smith, S. J. Filopodia, spines, and the generation of synaptic diversity. Neuron 27, 11–14 (2000). (10.1016/S0896-6273(00)00003-9) / Neuron by JD Jontes (2000)
  53. Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027 (2002). (10.1016/S0896-6273(02)00906-6) / Neuron by T Bonhoeffer (2002)
  54. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996). (10.1016/S0896-6273(00)80283-4) / Neuron by NE Ziv (1996)
  55. Okabe, S., Miwa, A. & Okado, H. Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci. 21, 6105–6114 (2001). (10.1523/JNEUROSCI.21-16-06105.2001) / J. Neurosci. by S Okabe (2001)
  56. Marrs, G. S., Green, S. H. & Dailey, M. E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nature Neurosci. 4, 1006–1013 (2001). (10.1038/nn717) / Nature Neurosci. by GS Marrs (2001)
  57. Niell, C. M., Meyer, M. P. & Smith, S. J. In vivo imaging of synapse formation on a growing dendritic arbor. Nature Neurosci. 7, 254–260 (2004). (10.1038/nn1191) / Nature Neurosci. by CM Niell (2004)
  58. Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996). (10.1523/JNEUROSCI.16-09-02983.1996) / J. Neurosci. by ME Dailey (1996)
  59. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci. 18, 8900–8911 (1998). References 54–59 establish a fundamental role for dendritic filopodia in the initiation of synaptogenesis. (10.1523/JNEUROSCI.18-21-08900.1998) / J Neurosci. by JC Fiala (1998)
  60. Fiala, J. C., Allwardt, B. & Harris, K. M. Dendritic spines do not split during hippocampal LTP or maturation. Nature Neurosci. 5, 297–298 (2002). (10.1038/nn830) / Nature Neurosci. by JC Fiala (2002)
  61. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl Acad. Sci. USA 96, 13438–13443 (1999). (10.1073/pnas.96.23.13438) / Proc. Natl Acad. Sci. USA by A Dunaevsky (1999)
  62. Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000). (10.1038/35009107) / Nature by B Lendvai (2000)
  63. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002). (10.1038/nature01273) / Nature by JT Trachtenberg (2002)
  64. Portera-Cailliau, C., Pan, D. T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23, 7129–7142 (2003). (10.1523/JNEUROSCI.23-18-07129.2003) / J. Neurosci. by C Portera-Cailliau (2003)
  65. Ritzenthaler, S., Suzuki, E. & Chiba, A. Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nature Neurosci. 3, 1012–1017 (2000). (10.1038/79833) / Nature Neurosci. by S Ritzenthaler (2000)
  66. Ritzenthaler, S. & Chiba, A. Myopodia (postsynaptic filopodia) participate in synaptic target recognition. J. Neurobiol. 55, 31–40 (2003). (10.1002/neu.10180) / J. Neurobiol. by S Ritzenthaler (2003)
  67. Dailey, M. E., Buchanan, J., Bergles, D. E. & Smith, S. J. Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro. J. Neurosci. 14, 1060–1078 (1994). (10.1523/JNEUROSCI.14-03-01060.1994) / J. Neurosci. by ME Dailey (1994)
  68. Bastmeyer, M. & O'Leary, D. D. Dynamics of target recognition by interstitial axon branching along developing cortical axons. J. Neurosci. 16, 1450–1459 (1996). (10.1523/JNEUROSCI.16-04-01450.1996) / J. Neurosci. by M Bastmeyer (1996)
  69. Chang, S. & De Camilli, P. Glutamate regulates actin-based motility in axonal filopodia. Nature Neurosci. 4, 787–793 (2001). (10.1038/90489) / Nature Neurosci. by S Chang (2001)
  70. Tashiro, A., Dunaevsky, A., Blazeski, R., Mason, C. A. & Yuste, R. Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: a two-step model of synaptogenesis. Neuron 38, 773–784 (2003). (10.1016/S0896-6273(03)00299-X) / Neuron by A Tashiro (2003)
  71. Yoshihara, M., Rheuben, M. B. & Kidokoro, Y. Transition from growth cone to functional motor nerve terminal in Drosophila embryos. J. Neurosci. 17, 8408–8426 (1997). (10.1523/JNEUROSCI.17-21-08408.1997) / J. Neurosci. by M Yoshihara (1997)
  72. Ahmari, S. E. & Smith, S. J. Knowing a nascent synapse when you see it. Neuron 34, 333–336 (2002). (10.1016/S0896-6273(02)00685-2) / Neuron by SE Ahmari (2002)
  73. Dyson, S. E. & Jones, D. G. Quantitation of terminal parameters and their inter-relationships in maturing central synapses: a perspective for experimental studies. Brain Res. 183, 43–59 (1980). (10.1016/0006-8993(80)90118-3) / Brain Res. by SE Dyson (1980)
  74. Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12, 697–712 (1983). (10.1007/BF01181531) / J. Neurocytol. by ME Blue (1983)
  75. Weber, A. J. & Kalil, R. E. Development of corticogeniculate synapses in the cat. J. Comp. Neurol. 264, 171–192 (1987). (10.1002/cne.902640204) / J. Comp. Neurol. by AJ Weber (1987)
  76. Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001). (10.1016/S0896-6273(01)00219-7) / Neuron by JJ Renger (2001)
  77. Basarsky, T. A., Parpura, V. & Haydon, P. G. Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J. Neurosci. 14, 6402–6411 (1994). (10.1523/JNEUROSCI.14-11-06402.1994) / J. Neurosci. by TA Basarsky (1994)
  78. Verderio, C., Coco, S., Fumagalli, G. & Matteoli, M. Calcium-dependent glutamate release during neuronal development and synaptogenesis: different involvement of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive channels. Proc. Natl Acad. Sci. USA 92, 6449–6453 (1995). (10.1073/pnas.92.14.6449) / Proc. Natl Acad. Sci. USA by C Verderio (1995)
  79. Verderio, C. et al. Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J. Neurosci. 19, 6723–6732 (1999). (10.1523/JNEUROSCI.19-16-06723.1999) / J. Neurosci. by C Verderio (1999)
  80. Scholz, K. P. & Miller, R. J. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons. J. Neurosci. 15, 4612–4617 (1995). (10.1523/JNEUROSCI.15-06-04612.1995) / J. Neurosci. by KP Scholz (1995)
  81. Coco, S., Verderio, C., De Camilli, P. & Matteoli, M. Calcium dependence of synaptic vesicle recycling before and after synaptogenesis. J. Neurochem. 71, 1987–1992 (1998). References 78–81 demonstrate that synaptic vesicle recycling along axons is functionally different to that at synapses. (10.1046/j.1471-4159.1998.71051987.x) / J. Neurochem. by S Coco (1998)
  82. Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. (Lond.) 509, 419–423 (1998). (10.1111/j.1469-7793.1998.419bn.x) / J. Physiol. (Lond.) by S Iwasaki (1998)
  83. Vance, C. L. et al. Differential expression and association of calcium channel α1B and β subunits during rat brain ontogeny. J. Biol. Chem. 273, 14495–14502 (1998). (10.1074/jbc.273.23.14495) / J. Biol. Chem. by CL Vance (1998)
  84. Rosato Siri, M. D. & Uchitel, O. D. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions. J. Physiol. (Lond.) 514, 533–540 (1999). (10.1111/j.1469-7793.1999.533ae.x) / J. Physiol. (Lond.) by MD Rosato Siri (1999)
  85. Pravettoni, E. et al. Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol. 227, 581–594 (2000). (10.1006/dbio.2000.9872) / Dev. Biol. by E Pravettoni (2000)
  86. Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci. 20, 59–65 (2000). (10.1523/JNEUROSCI.20-01-00059.2000) / J. Neurosci. by S Iwasaki (2000)
  87. Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995). (10.1126/science.7569903) / Science by VY Bolshakov (1995)
  88. Dumas, T. C. & Foster, T. C. Developmental increase in CA3-CA1 presynaptic function in the hippocampal slice. J. Neurophysiol. 73, 1821–1828 (1995). (10.1152/jn.1995.73.5.1821) / J. Neurophysiol. by TC Dumas (1995)
  89. Choi, S. & Lovinger, D. M. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl Acad. Sci. USA 94, 2665–2670 (1997). (10.1073/pnas.94.6.2665) / Proc. Natl Acad. Sci. USA by S Choi (1997)
  90. Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000). (10.1016/S0166-2236(00)01580-0) / Trends Neurosci. by AM Thomson (2000)
  91. Gasparini, S., Saviane, C., Voronin, L. L. & Cherubini, E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc. Natl Acad. Sci. USA 97, 9741–9746 (2000). (10.1073/pnas.170032297) / Proc. Natl Acad. Sci. USA by S Gasparini (2000)
  92. Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321 (2001). (10.1038/35077101) / Nature by P Chavis (2001)
  93. Iwasaki, S. & Takahashi, T. Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J. Physiol. (Lond.) 534, 861–871 (2001). (10.1111/j.1469-7793.2001.00861.x) / J. Physiol. (Lond.) by S Iwasaki (2001)
  94. Brenowitz, S. & Trussell, L. O. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J. Neurosci. 21, 9487–9498 (2001). (10.1523/JNEUROSCI.21-23-09487.2001) / J. Neurosci. by S Brenowitz (2001)
  95. Fischbach, G. D. Synaptic potentials recorded in cell cultures of nerve and muscle. Science 169, 1331–1333 (1970). (10.1126/science.169.3952.1331) / Science by GD Fischbach (1970)
  96. Crain, S. M. Bioelectric interactions between cultured fetal rodent spinal cord and skeletal muscle after innervation in vitro. J. Exp. Zool. 173, 353–369 (1970). (10.1002/jez.1401730403) / J. Exp. Zool. by SM Crain (1970)
  97. Kidokoro, Y. & Yeh, E. Initial synaptic transmission at the growth cone in Xenopus nerve-muscle cultures. Proc. Natl Acad. Sci. USA 79, 6727–6731 (1982). (10.1073/pnas.79.21.6727) / Proc. Natl Acad. Sci. USA by Y Kidokoro (1982)
  98. Xie, Z. P. & Poo, M. M. Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc. Natl Acad. Sci. USA 83, 7069–7073 (1986). (10.1073/pnas.83.18.7069) / Proc. Natl Acad. Sci. USA by ZP Xie (1986)
  99. Dai, Z. & Peng, H. B. Elevation in presynaptic Ca2+ level accompanying initial nerve-muscle contact in tissue culture. Neuron 10, 827–837 (1993). (10.1016/0896-6273(93)90199-2) / Neuron by Z Dai (1993)
  100. Evers, J., Laser, M., Sun, Y. A., Xie, Z. P. & Poo, M. M. Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J. Neurosci. 9, 1523–1539 (1989). (10.1523/JNEUROSCI.09-05-01523.1989) / J. Neurosci. by J Evers (1989)
  101. Buchanan, J., Sun, Y. A. & Poo, M. M. Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts. J. Neurosci. 9, 1540–1554 (1989). (10.1523/JNEUROSCI.09-05-01540.1989) / J. Neurosci. by J Buchanan (1989)
  102. Takahashi, T., Nakajima, Y., Hirosawa, K., Nakajima, S. & Onodera, K. Structure and physiology of developing neuromuscular synapses in culture. J. Neurosci. 7, 473–481 (1987). References 101 and 102 correlate the ultrastructural changes in nascent synapses with the onset of synaptic activity. (10.1523/JNEUROSCI.07-02-00473.1987) / J. Neurosci. by T Takahashi (1987)
  103. Mozhayeva, M. G., Sara, Y., Liu, X. & Kavalali, E. T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002). (10.1523/JNEUROSCI.22-03-00654.2002) / J. Neurosci. by MG Mozhayeva (2002)
  104. Okabe, S., Kim, H. D., Miwa, A., Kuriu, T. & Okado, H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nature Neurosci. 2, 804–811 (1999). (10.1038/12175) / Nature Neurosci. by S Okabe (1999)
  105. Wolff, J. R., Laskawi, R., Spatz, W. B. & Missler, M. Structural dynamics of synapses and synaptic components. Behav. Brain Res. 66, 13–20 (1995). (10.1016/0166-4328(94)00118-Y) / Behav. Brain Res. by JR Wolff (1995)
  106. De Camilli, P., Benfenati, F., Valtorta, F. & Greengard, P. The synapsins. Annu. Rev. Cell Biol. 6, 433–460 (1990). (10.1146/annurev.cb.06.110190.002245) / Annu. Rev. Cell Biol. by P De Camilli (1990)
  107. Lu, B. et al. Expression of synapsin I correlates with maturation of the neuromuscular synapse. Neuroscience. 74, 1087–1097 (1996). (10.1016/0306-4522(96)00187-X) / Neuroscience. by B Lu (1996)
  108. Lu, B., Greengard, P. & Poo, M. M. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron 8, 521–529 (1992). (10.1016/0896-6273(92)90280-Q) / Neuron by B Lu (1992)
  109. Valtorta, F. et al. Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis. Eur. J. Neurosci. 7, 261–270 (1995). (10.1111/j.1460-9568.1995.tb01062.x) / Eur. J. Neurosci. by F Valtorta (1995)
  110. Nakata, T. et al. Predominant and developmentally regulated expression of dynamin in neurons. Neuron 7, 461–469 (1991). (10.1016/0896-6273(91)90298-E) / Neuron by T Nakata (1991)
  111. Faire, K., Trent, F., Tepper, J. M. & Bonder, E. M. Analysis of dynamin isoforms in mammalian brain: dynamin-1 expression is spatially and temporally regulated during postnatal development. Proc. Natl Acad. Sci. USA 89, 8376–8380 (1992). (10.1073/pnas.89.17.8376) / Proc. Natl Acad. Sci. USA by K Faire (1992)
  112. Bergmann, M., Grabs, D. & Rager, G. Developmental expression of dynamin in the chick retinotectal system. J. Histochem. Cytochem. 47, 1297–1306 (1999). (10.1177/002215549904701009) / J. Histochem. Cytochem. by M Bergmann (1999)
  113. Grabs, D., Bergmann, M. & Rager, G. Developmental expression of amphiphysin in the retinotectal system of the chick: from mRNA to protein. Eur. J. Neurosci. 12, 1545–1553 (2000). (10.1046/j.1460-9568.2000.00043.x) / Eur. J. Neurosci. by D Grabs (2000)
  114. Mundigl, O. et al. Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J. Neurosci. 18, 93–103 (1998). (10.1523/JNEUROSCI.18-01-00093.1998) / J. Neurosci. by O Mundigl (1998)
  115. Noakes, P. G., Chin, D., Kim, S. S., Liang, S. & Phillips, W. D. Expression and localisation of dynamin and syntaxin during neural development and neuromuscular synapse formation. J. Comp. Neurol. 410, 531–440 (1999). (10.1002/(SICI)1096-9861(19990809)410:4<531::AID-CNE2>3.0.CO;2-C) / J. Comp. Neurol. by PG Noakes (1999)
  116. Fletcher, T. L., De Camilli, P. & Banker, G. Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci. 14, 6695–6706 (1994). (10.1523/JNEUROSCI.14-11-06695.1994) / J. Neurosci. by TL Fletcher (1994)
  117. Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19, 10004–10013 (1999). (10.1523/JNEUROSCI.19-22-10004.1999) / J. Neurosci. by R Mohrmann (1999)
  118. Niell, C. M. & Smith, S. J. Live optical imaging of nervous system development. Annu. Rev. Physiol. 66, 771–798 (2004). (10.1146/annurev.physiol.66.082602.095217) / Annu. Rev. Physiol. by CM Niell (2004)
  119. Umeda, T. & Okabe, S. Visualizing synapse formation and remodeling: recent advances in real-time imaging of CNS synapses. Neurosci. Res. 40, 291–300 (2001). (10.1016/S0168-0102(01)00243-7) / Neurosci. Res. by T Umeda (2001)
  120. Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001). (10.1016/S0092-8674(01)00579-7) / Cell by MA Colicos (2001)
  121. Bresler, T. et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J. Neurosci. (in the press). (10.1523/JNEUROSCI.3819-03.2004)
  122. Benson, D. L., Colman, D. R. & Huntley, G. W. Molecules, maps and synapse specificity. Nature Rev. Neurosci. 2, 899–909 (2001). (10.1038/35104078) / Nature Rev. Neurosci. by DL Benson (2001)
  123. Kaether, C., Skehel, P. & Dotti, C. G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000). (10.1091/mbc.11.4.1213) / Mol. Biol. Cell by C Kaether (2000)
  124. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nature Neurosci. 6, 491–500 (2003). An example of synaptic-activity-regulated turnover of presynaptic boutons/synaptic vesicle clusters. (10.1038/nn1046) / Nature Neurosci. by V De Paola (2003)
  125. Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998). (10.1083/jcb.140.3.659) / J. Cell Biol. by T Nakata (1998)
  126. Hopf, F. W., Waters, J., Mehta, S. & Smith, S. J. Stability and plasticity of developing synapses in hippocampal neuronal cultures. J. Neurosci. 22, 775–781 (2002). (10.1523/JNEUROSCI.22-03-00775.2002) / J. Neurosci. by FW Hopf (2002)
  127. Booj, S., Larsson, P. A., Dahllof, A. G. & Dahlstrom, A. Axonal transport of synapsin I- and cholinergic synaptic vesicle-like material; further immunohistochemical evidence for transport of axonal cholinergic transmitter vesicles in motor neurons. Acta Physiol. Scand. 128, 155–165 (1986). (10.1111/j.1748-1716.1986.tb07962.x) / Acta Physiol. Scand. by S Booj (1986)
  128. Fletcher, T. L., Cameron, P., De Camilli, P. & Banker, G. The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J. Neurosci. 11, 1617–1626 (1991). (10.1523/JNEUROSCI.11-06-01617.1991) / J. Neurosci. by TL Fletcher (1991)
  129. Sabo, S. L. & McAllister, A. K. Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia. Nature Neurosci. 6, 1264–1269 (2003). (10.1038/nn1149) / Nature Neurosci. by SL Sabo (2003)
  130. Roos, J. & Kelly, R. B. Preassembly and transport of nerve terminals: a new concept of axonal transport. Nature Neurosci. 3, 415–417 (2000). (10.1038/74773) / Nature Neurosci. by J Roos (2000)
  131. Zhai, R. G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29, 131–143 (2001). This paper describes the isolation of a 80 nm dense-core vesicle carrying active zone proteins. (10.1016/S0896-6273(01)00185-4) / Neuron by RG Zhai (2001)
  132. Shapira, M. et al. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 38, 237–252 (2003). This paper indicates that active zones are formed from a small number of precursor vesicles. (10.1016/S0896-6273(03)00207-1) / Neuron by M Shapira (2003)
  133. Kim, S. et al. The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J. Biol. Chem. 278, 6291–6300 (2003). (10.1074/jbc.M212287200) / J. Biol. Chem. by S Kim (2003)
  134. Ohtsuka, T. et al. Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J. Cell Biol. 158, 577–590 (2002). (10.1083/jcb.200202083) / J. Cell Biol. by T Ohtsuka (2002)
  135. Sytnyk, V. et al. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J. Cell Biol. 159, 649–661 (2002). (10.1083/jcb.200205098) / J. Cell Biol. by V Sytnyk (2002)
  136. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001). This paper demonstrates the crucial role of glia in synaptogenesis. (10.1126/science.291.5504.657) / Science by EM Ullian (2001)
  137. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963). (10.1073/pnas.50.4.703) / Proc. Natl Acad. Sci. USA by RW Sperry (1963)
  138. Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neurosci. 4, 569–578 (2001). (10.1038/88388) / Nature Neurosci. by AM Craig (2001)
  139. Korkotian, E. & Segal, M. Regulation of dendritic spine motility in cultured hippocampal neurons. J. Neurosci. 21, 6115–6124 (2001). (10.1523/JNEUROSCI.21-16-06115.2001) / J. Neurosci. by E Korkotian (2001)
  140. Nikonenko, I., Jourdain, P. & Muller, D. Presynaptic remodeling contributes to activity-dependent synaptogenesis. J. Neurosci. 23, 8498–8505 (2003). (10.1523/JNEUROSCI.23-24-08498.2003) / J. Neurosci. by I Nikonenko (2003)
  141. Renger, J. J., Ueda, A., Atwood, H. L., Govind, C. K. & Wu, C. F. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J. Neurosci. 20, 3980–3992 (2000). (10.1523/JNEUROSCI.20-11-03980.2000) / J. Neurosci. by JJ Renger (2000)
  142. Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21, 5169–5181 (2001). (10.1523/JNEUROSCI.21-14-05169.2001) / J. Neurosci. by W Zhang (2001)
  143. Scheiffele, P. Cell–cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003). (10.1146/annurev.neuro.26.043002.094940) / Annu. Rev. Neurosci. by P Scheiffele (2003)
  144. Goda, Y. & Davis, G. W. Mechanisms of synapse assembly and disassembly. Neuron 40, 243–264 (2003). (10.1016/S0896-6273(03)00608-1) / Neuron by Y Goda (2003)
  145. Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423–434 (1996). (10.1016/S0896-6273(00)80175-0) / Neuron by AM Fannon (1996)
  146. Shapiro, L. & Colman, D. R. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 23, 427–430 (1999). (10.1016/S0896-6273(00)80796-5) / Neuron by L Shapiro (1999)
  147. Phillips, G. R. et al. γ-Protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J. Neurosci. 23, 5096–5104 (2003). (10.1523/JNEUROSCI.23-12-05096.2003) / J. Neurosci. by GR Phillips (2003)
  148. Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996). (10.1083/jcb.135.3.767) / J. Cell Biol. by N Uchida (1996)
  149. Bruses, J. L. Cadherin-mediated adhesion at the interneuronal synapse. Curr. Opin. Cell Biol. 12, 593–597 (2000). (10.1016/S0955-0674(00)00137-X) / Curr. Opin. Cell Biol. by JL Bruses (2000)
  150. Nishimura, W., Yao, I., Iida, J., Tanaka, N. & Hata, Y. Interaction of synaptic scaffolding molecule and β-catenin. J. Neurosci. 22, 757–765 (2002). (10.1523/JNEUROSCI.22-03-00757.2002) / J. Neurosci. by W Nishimura (2002)
  151. Benson, D. L. & Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci. 18, 6892–6904 (1998). (10.1523/JNEUROSCI.18-17-06892.1998) / J. Neurosci. by DL Benson (1998)
  152. Huntley, G. W. & Benson, D. L. Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. J. Comp. Neurol. 407, 453–471 (1999). (10.1002/(SICI)1096-9861(19990517)407:4<453::AID-CNE1>3.0.CO;2-4) / J. Comp. Neurol. by GW Huntley (1999)
  153. Manabe, T. et al. Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci. 15, 534–546 (2000). (10.1006/mcne.2000.0849) / Mol. Cell. Neurosci. by T Manabe (2000)
  154. Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89 (2002). (10.1016/S0896-6273(02)00748-1) / Neuron by H Togashi (2002)
  155. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000). References 155, 176 and 180 demonstrate the potent activity of neuroligin and SynCAM in the induction of active zone formation. (10.1016/S0092-8674(00)80877-6) / Cell by P Scheiffele (2000)
  156. Bamji, S. X. et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003). (10.1016/S0896-6273(03)00718-9) / Neuron by SX Bamji (2003)
  157. Gil, O. D., Needleman, L. & Huntley, G. W. Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex. J. Comp. Neurol. 453, 372–388 (2002). (10.1002/cne.10424) / J. Comp. Neurol. by OD Gil (2002)
  158. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000). (10.1038/76877) / Nature Immunol. by ML Dustin (2000)
  159. Dunaevsky, A. & Connor, E. A. F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J. Neurosci. 20, 6007–6012 (2000). (10.1523/JNEUROSCI.20-16-06007.2000) / J. Neurosci. by A Dunaevsky (2000)
  160. Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA 99, 14476–14481 (2002). (10.1073/pnas.212381799) / Proc. Natl Acad. Sci. USA by O Shupliakov (2002)
  161. Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neurosci. 6, 127–135 (2003). (10.1038/nn1002) / Nature Neurosci. by S Sankaranarayanan (2003)
  162. Bloom, O. et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161, 737–747 (2003). (10.1083/jcb.200212140) / J. Cell Biol. by O Bloom (2003)
  163. Job, C. & Lagnado, L. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J. Cell Biol. 143, 1661–1672 (1998). (10.1083/jcb.143.6.1661) / J. Cell Biol. by C Job (1998)
  164. Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993). (10.1126/science.8430330) / Science by P Greengard (1993)
  165. Pieribone, V. A. et al. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493–497 (1995). (10.1038/375493a0) / Nature by VA Pieribone (1995)
  166. Ryan, T. A., Li, L., Chin, L. S., Greengard, P. & Smith, S. J. Synaptic vesicle recycling in synapsin I knock-out mice. J. Cell Biol. 134, 1219–1227 (1996). (10.1083/jcb.134.5.1219) / J. Cell Biol. by TA Ryan (1996)
  167. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995). (10.1038/375488a0) / Nature by TW Rosahl (1995)
  168. Jovanovic, J. N. et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl Acad. Sci. USA 93, 3679–3683 (1996). (10.1073/pnas.93.8.3679) / Proc. Natl Acad. Sci. USA by JN Jovanovic (1996)
  169. Yamagata, Y., Jovanovic, J. N., Czernik, A. J., Greengard, P. & Obata, K. Bidirectional changes in synapsin I phosphorylation at MAP kinase-dependent sites by acute neuronal excitation in vivo. J. Neurochem. 80, 835–842 (2002). (10.1046/j.0022-3042.2001.00753.x) / J. Neurochem. by Y Yamagata (2002)
  170. Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci. 4, 1187–1193 (2001). A beautiful demonstation of how activity affects the distribution of the presynaptic molecule synapsin. (10.1038/nn756) / Nature Neurosci. by P Chi (2001)
  171. Chi, P., Greengard, P. & Ryan, T. A. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69–78 (2003). (10.1016/S0896-6273(03)00151-X) / Neuron by P Chi (2003)
  172. Halpain, S. Actin in a supporting role. Nature Neurosci. 6, 101–102 (2003). (10.1038/nn0203-101) / Nature Neurosci. by S Halpain (2003)
  173. Moscoso, L. M., Cremer, H. & Sanes, J. R. Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J. Neurosci. 18, 1465–1477 (1998). (10.1523/JNEUROSCI.18-04-01465.1998) / J. Neurosci. by LM Moscoso (1998)
  174. Rafuse, V. F., Polo-Parada, L. & Landmesser, L. T. Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J. Neurosci. 20, 6529–6539 (2000). (10.1523/JNEUROSCI.20-17-06529.2000) / J. Neurosci. by VF Rafuse (2000)
  175. Polo-Parada, L., Bose, C. M. & Landmesser, L. T. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32, 815–828 (2001). (10.1016/S0896-6273(01)00521-9) / Neuron by L Polo-Parada (2001)
  176. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002). (10.1126/science.1072356) / Science by T Biederer (2002)
  177. Nguyen, T. & Sudhof, T. C. Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic cell adhesion molecules. J. Biol. Chem. 272, 26032–26039 (1997). (10.1074/jbc.272.41.26032) / J. Biol. Chem. by T Nguyen (1997)
  178. Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for β-neurexins. Cell 81, 435–443 (1995). (10.1016/0092-8674(95)90396-8) / Cell by K Ichtchenko (1995)
  179. Scholl, F. G. & Scheiffele, P. Making connections: cholinesterase-domain proteins in the CNS. Trends Neurosci. 26, 618–624 (2003). (10.1016/j.tins.2003.09.004) / Trends Neurosci. by FG Scholl (2003)
  180. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nature Neurosci. 6, 708–716 (2003). (10.1038/nn1074) / Nature Neurosci. by C Dean (2003)
  181. Hata, Y., Butz, S. & Sudhof, T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996). (10.1523/JNEUROSCI.16-08-02488.1996) / J. Neurosci. by Y Hata (1996)
  182. Biederer, T. & Sudhof, T. C. CASK and protein 4.1 support F-actin nucleation on neurexins. J. Biol. Chem. 276, 47869–47876 (2001). (10.1074/jbc.M105287200) / J. Biol. Chem. by T Biederer (2001)
  183. Butz, S., Okamoto, M. & Sudhof, T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782 (1998). (10.1016/S0092-8674(00)81736-5) / Cell by S Butz (1998)
  184. Borg, J. P. et al. Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci. 19, 1307–1316 (1999). (10.1523/JNEUROSCI.19-04-01307.1999) / J. Neurosci. by JP Borg (1999)
  185. Maximov, A., Sudhof, T. C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999). (10.1074/jbc.274.35.24453) / J. Biol. Chem. by A Maximov (1999)
  186. Spafford, J. D. et al. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J. Biol. Chem. 278, 4258–4267 (2003). (10.1074/jbc.M211076200) / J. Biol. Chem. by JD Spafford (2003)
  187. Missler, M., Fernandez-Chacon, R. & Sudhof, T. C. The making of neurexins. J. Neurochem. 71, 1339–1347 (1998). (10.1046/j.1471-4159.1998.71041339.x) / J. Neurochem. by M Missler (1998)
  188. Missler, M. et al. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 424, 939–948 (2003). This paper demonstrates a crucial role for α-neurexin in the localization of calcium channels to active zones. (10.1038/nature01755) / Nature by M Missler (2003)
  189. Davletov, B. A., Krasnoperov, V., Hata, Y., Petrenko, A. G. & Sudhof, T. C. High affinity binding of α-latrotoxin to recombinant neurexin I α. J. Biol. Chem. 270, 23903–23905 (1995). (10.1074/jbc.270.41.23903) / J. Biol. Chem. by BA Davletov (1995)
  190. Missler, M., Hammer, R. E. & Sudhof, T. C. Neurexophilin binding to α-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J. Biol. Chem. 273, 34716–34723 (1998). (10.1074/jbc.273.52.34716) / J. Biol. Chem. by M Missler (1998)
  191. Biederer, T. & Sudhof, T. C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39803–39806 (2000). (10.1074/jbc.C000656200) / J. Biol. Chem. by T Biederer (2000)
  192. Petrenko, A. G. et al. Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353, 65–68 (1991). (10.1038/353065a0) / Nature by AG Petrenko (1991)
  193. Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002). (10.1038/415321a) / Nature by S Schoch (2002)
  194. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997). (10.1038/41580) / Nature by Y Wang (1997)
  195. Wang, Y., Liu, X., Biederer, T. & Sudhof, T. C. A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proc. Natl Acad. Sci. USA 99, 14464–14469 (2002). (10.1073/pnas.182532999) / Proc. Natl Acad. Sci. USA by Y Wang (2002)
  196. Ko, J., Na, M., Kim, S., Lee, J. R. & Kim, E. Interaction of the ERC family of RIM-binding proteins with the liprin-α family of multidomain proteins. J. Biol. Chem. 278, 42377–42385 (2003). (10.1074/jbc.M307561200) / J. Biol. Chem. by J Ko (2003)
  197. Takao-Rikitsu, E. et al. Physical and functional interaction of the active zone proteins, CAST, RIM1 and Bassoon, in neurotransmitter release. J. Cell Biol. 164, 301–311 (2004). (10.1083/jcb.200307101) / J. Cell Biol. by E Takao-Rikitsu (2004)
  198. Altrock, W. D. et al. Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37, 787–800 (2003). (10.1016/S0896-6273(03)00088-6) / Neuron by WD Altrock (2003)
  199. Okabe, S. Birth, growth and elimination of a single synapse. Anat. Sci. Int. 77, 203–210 (2002). (10.1046/j.0022-7722.2002.00030.x) / Anat. Sci. Int. by S Okabe (2002)
  200. Li, Z. & Sheng, M. Some assembly required: the development of neuronal synapses. Nature Rev. Mol. Cell Biol. 4, 833–841 (2003). (10.1038/nrm1242) / Nature Rev. Mol. Cell Biol. by Z Li (2003)
  201. Atwood, H. L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nature Rev. Neurosci. 3, 497–516 (2002). (10.1038/nrn876) / Nature Rev. Neurosci. by HL Atwood (2002)
  202. Slezak, M. & Pfrieger, F. W. New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci. 26, 531–535 (2003). (10.1016/j.tins.2003.08.005) / Trends Neurosci. by M Slezak (2003)
Dates
Type When
Created 21 years, 4 months ago (May 4, 2004, 9:58 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:53 a.m.)
Indexed 4 weeks, 2 days ago (Aug. 6, 2025, 9:11 a.m.)
Issued 21 years, 4 months ago (May 1, 2004)
Published 21 years, 4 months ago (May 1, 2004)
Published Print 21 years, 4 months ago (May 1, 2004)
Funders 0

None

@article{Ziv_2004, title={Cellular and molecular mechanisms of presynaptic assembly}, volume={5}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn1370}, DOI={10.1038/nrn1370}, number={5}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Ziv, Noam E. and Garner, Craig C.}, year={2004}, month=may, pages={385–399} }