Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
References
120
Referenced
901
-
deFelipe, J. & Fari–as, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).
(
10.1016/0301-0082(92)90015-7
) / Prog. Neurobiol. by J deFelipe (1992) -
Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edn (Springer, Berlin, 1998).
(
10.1007/978-3-662-03733-1
) / Cortex: Statistics and Geometry of Neuronal Connectivity by V Braitenberg (1998) -
Evarts, E. V. Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J. Neurophysiol. 27, 152–171 (1964).
(
10.1152/jn.1964.27.2.152
) / J. Neurophysiol. by EV Evarts (1964) -
Steriade, M. & McCarley, R. W. Brainstem Control of Wakefulness and Sleep (Plenum, New York, 1990).
(
10.1007/978-1-4757-4669-3
) / Brainstem Control of Wakefulness and Sleep by M Steriade (1990) -
Matsumura, M., Cope, T. & Fetz, E. E. Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp. Brain Res. 70, 463–469 (1988).
(
10.1007/BF00247594
) / Exp. Brain Res. by M Matsumura (1988) -
Baranyi, A., Szente, M. B. & Woody C. D. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J. Neurophysiol. 69, 1865–1879 (1993).
(
10.1152/jn.1993.69.6.1865
) / J. Neurophysiol. by A Baranyi (1993) -
Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001). First intracellular recordings during different behavioural states. The same neurons are shown to experience consistent changes of membrane parameters across periods of waking, slow-wave sleep and rapid eye movement sleep.
(
10.1152/jn.2001.85.5.1969
) / J. Neurophysiol. by M Steriade (2001) -
Williams, S. R. & Stuart, G. J. Role of dendritic synapse location in the control of action potential output. Trends Neurosci. 26, 147–154 (2003).
(
10.1016/S0166-2236(03)00035-3
) / Trends Neurosci. by SR Williams (2003) -
Migliore, M. & Shepherd, G. M. Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3, 362–370 (2002).
(
10.1038/nrn810
) / Nature Rev. Neurosci. by M Migliore (2002) -
Häusser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).
(
10.1126/science.290.5492.739
) / Science by M Häusser (2000) -
Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394 (1999).
(
10.1016/S0896-6273(00)81098-3
) / Neuron by S Cash (1999) -
Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).
(
10.1126/science.1060342
) / Science by F Pouille (2001) -
Stuart, G. J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nature Neurosci. 4, 63–71 (2001). Experimental demonstration that EPSPs interact non-linearly with dendritic spikes, resulting in a coincidence detection mechanism.
(
10.1038/82910
) / Nature Neurosci. by GJ Stuart (2001) - Barrett, J. N. Motoneuron dendrites: role in synaptic integration. Fed. Proc. 34, 1398–1407 (1975). Theoretical paper investigating synaptic integration where the possible consequences of high-conductance states on integrative properties were mentioned for the first time. / Fed. Proc. by JN Barrett (1975)
-
Holmes, W. R. & Woody, C. D. Effects of uniform and non-uniform synaptic 'activation-distributions' on the cable properties of modeled cortical pyramidal neurons. Brain Res. 505, 12–22 (1989).
(
10.1016/0006-8993(89)90110-8
) / Brain Res. by WR Holmes (1989) -
Bernander, O., Douglas, R. J., Martin, K. A. & Koch, C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl Acad. Sci. USA 88, 11569–11573 (1991).
(
10.1073/pnas.88.24.11569
) / Proc. Natl Acad. Sci. USA by O Bernander (1991) -
Destexhe, A. & Paré, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).
(
10.1152/jn.1999.81.4.1531
) / J. Neurophysiol. by A Destexhe (1999) -
Rudolph, M. & Destexhe, A. A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 23, 2466–2476 (2003). Theoretical paper showing that cortical neurons in high-conductance states might obey drastically different rules of dendritic integration compared with low-conductance states.
(
10.1523/JNEUROSCI.23-06-02466.2003
) / J. Neurosci. by M Rudolph (2003) -
Brock, L. G., Coombs, J. S. & Eccles, J. C. The recording of potential from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460 (1952).
(
10.1113/jphysiol.1952.sp004759
) / J. Physiol. (Lond.) by LG Brock (1952) -
Woody, C. D. & Gruen, E. Characterization of electrophysiological properties of intracellularly recorded neurons in the neocortex of awake cats: a comparison of the response to injected current in spike overshoot and undershoot neurons. Brain Res. 158, 343–357 (1978). First intracellular study reporting that cortical neurons are in a high-conductance state in awake animals.
(
10.1016/0006-8993(78)90680-7
) / Brain Res. by CD Woody (1978) -
Berthier, N. & Woody, C. D. In vivo properties of neurons of the precruciate cortex of cats. Brain Res. Bull. 21, 385–393 (1988).
(
10.1016/0361-9230(88)90150-5
) / Brain Res. Bull. by N Berthier (1988) -
Bindman, L. J., Meyer, T. & Prince, C. A. Comparison of the electrical properties of neocortical neurones in slices in vitro and in the anaesthetized rat. Exp. Brain Res. 69, 489–496 (1988).
(
10.1007/BF00247303
) / Exp. Brain Res. by LJ Bindman (1988) -
Paré, D., Shink, E., Gaudreau, H., Destexhe, A. & Lang, E. J. Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. J. Neurophysiol. 79, 1450–1460 (1998). First characterization of synaptic background activity in vivo ; the first study in which the same neurons were compared between active network states and after total suppression of network activity.
(
10.1152/jn.1998.79.3.1450
) / J. Neurophysiol. by D Paré (1998) -
Contreras, D., Timofeev, I. & Steriade, M. Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J. Physiol. (Lond.) 494, 251–264 (1996).
(
10.1113/jphysiol.1996.sp021488
) / J. Physiol. (Lond.) by D Contreras (1996) -
Steriade, M., Amzica, F. & Nunez, A. Cholinergic and noradrenergic modulation of the slow (∼0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70, 1385–1400 (1993).
(
10.1152/jn.1993.70.4.1385
) / J. Neurophysiol. by M Steriade (1993) -
Kasanetz, F., Riquelme, L. A. & Murer, M. G. Disruption of the two-state membrane potential of striatal neurones during cortical desynchronisation in anaesthetised rats. J. Physiol. (Lond.) 543, 577–589 (2002).
(
10.1113/jphysiol.2002.0024786
) / J. Physiol. (Lond.) by F Kasanetz (2002) -
Borg-Graham, L. J., Monier, C. & Frégnac Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).
(
10.1038/30735
) / Nature by LJ Borg-Graham (1998) -
Hirsch, J. A., Alonso, J. M., Clay Reid, R. & Martinez, L. M. Synaptic integration in striate cortical simple cells. J. Neurosci. 18, 9517–9528 (1998).
(
10.1523/JNEUROSCI.18-22-09517.1998
) / J. Neurosci. by JA Hirsch (1998) -
Anderson, J. S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).
(
10.1152/jn.2000.84.2.909
) / J. Neurophysiol. by JS Anderson (2000) -
Contreras, D., Destexhe, A. & Steriade, M. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol. 78, 335–350 (1997).
(
10.1152/jn.1997.78.1.335
) / J. Neurophysiol. by D Contreras (1997) -
Shu, Y., Hasenstaub, A. & McCormick, D. A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).
(
10.1038/nature01616
) / Nature by Y Shu (2003) -
Rall, W. Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962).
(
10.1016/S0006-3495(62)86953-7
) / Biophys. J. by W Rall (1962) - Llinás, R. R. Electroresponsive properties of dendrites in central neurons. Adv. Neurol. 12, 1–13 (1975). A visionary review paper on the importance of active dendritic properties in central neurons. / Adv. Neurol. by RR Llinás (1975)
-
Segev, I. & Rall, W. Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21, 453–460 (1998).
(
10.1016/S0166-2236(98)01327-7
) / Trends Neurosci. by I Segev (1998) -
Williams, S. R. & Stuart, G. J. Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J. Neurosci. 20, 1307–1317 (2000).
(
10.1523/JNEUROSCI.20-04-01307.2000
) / J. Neurosci. by SR Williams (2000) -
Huguenard, J. R., Hamill, O. P. & Prince, D. A. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J. Neurophysiol. 59, 778–795 (1988).
(
10.1152/jn.1988.59.3.778
) / J. Neurophysiol. by JR Huguenard (1988) -
Johnston, D., Magee, J. C., Colbert, C. M. & Christie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).
(
10.1146/annurev.ne.19.030196.001121
) / Annu. Rev. Neurosci. by D Johnston (1996) -
Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).
(
10.1016/S0896-6273(00)80091-4
) / Neuron by R Yuste (1996) - Stuart, G. J., Spruston, N. & Häusser, M. (eds) Dendrites (MIT Press, Cambridge, Massachusetts, 2000). / Dendrites by GJ Stuart (2000)
-
Bekkers, J. M. Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. (Lond.) 525, 593–609 (2000).
(
10.1111/j.1469-7793.2000.t01-1-00593.x
) / J. Physiol. (Lond.) by JM Bekkers (2000) -
Kang, J., Huguenard, J. R. & Prince, D. A. Development of BK channels in neocortical pyramidal neurons. J. Neurophysiol. 76, 188–198 (1996).
(
10.1152/jn.1996.76.1.188
) / J. Neurophysiol. by J Kang (1996) -
Hamill, O. P., Huguenard, J. R. & Prince, D. A. Patch-clamp studies of voltage gated currents in identified neurons of the rat cerebral cortex. Cereb. Cortex 1, 48–61 (1991).
(
10.1093/cercor/1.1.48
) / Cereb. Cortex by OP Hamill (1991) -
Berger, T., Larkum, M. E. & Lüscher, H. R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).
(
10.1152/jn.2001.85.2.855
) / J. Neurophysiol. by T Berger (2001) -
Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).
(
10.1523/JNEUROSCI.18-10-03501.1998
) / J. Neurosci. by G Stuart (1998) -
Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).
(
10.1152/jn.2000.83.5.3177
) / J. Neurophysiol. by SR Williams (2000) -
Koch, C. Cable theory in neurons, with active, linearized membranes. Biol. Cybern. 50, 15–33 (1984).
(
10.1007/BF00317936
) / Biol. Cybern. by C Koch (1984) -
Crill, W. E. & Schwindt, P. C. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J. Neurophysiol. 74, 2220–2224 (1995).
(
10.1152/jn.1995.74.5.2220
) / J. Neurophysiol. by WE Crill (1995) -
Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).
(
10.1016/0896-6273(95)90095-0
) / Neuron by G Stuart (1995) -
Spencer, W. A. & Kandel, E. R. Electrophysiology of hippocampal neurons. IV. Fast pre-potentials. J. Neurophysiol. 24, 272–285 (1961).
(
10.1152/jn.1961.24.3.272
) / J. Neurophysiol. by WA Spencer (1961) -
Wong, R. K., Prince, D. A. & Basbaum, A. I. Intradendritic recordings from hippocampal neurons. Proc. Natl Acad. Sci. USA 76, 986–990 (1979).
(
10.1073/pnas.76.2.986
) / Proc. Natl Acad. Sci. USA by RK Wong (1979) -
Benardo, L. S., Masukawa, L. M. & Prince D. A. Electrophysiology of isolated hippocampal pyramidal dendrites. Neuroscience 2, 1614–1622 (1982).
(
10.1523/JNEUROSCI.02-11-01614.1982
) / Neuroscience by LS Benardo (1982) -
Regehr, W., Kehoe, J. S., Ascher, P. & Armstrong, C. Synaptically triggered action potentials in dendrites. Neuron 11, 145–151 (1993).
(
10.1016/0896-6273(93)90278-Y
) / Neuron by W Regehr (1993) -
Andreasen, M. & Lambert J. D. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J. Physiol. (Lond.) 483, 421–441 (1995).
(
10.1113/jphysiol.1995.sp020595
) / J. Physiol. (Lond.) by M Andreasen (1995) -
Stuart, G. J. & Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994). First clear-cut evidence for active propagation of action potentials in the dendrites of neocortical neurons.
(
10.1038/367069a0
) / Nature by GJ Stuart (1994) -
Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).
(
10.1016/S0166-2236(96)10075-8
) / Trends Neurosci. by G Stuart (1997) -
Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).
(
10.1126/science.275.5297.209
) / Science by JC Magee (1997) -
Linden, D. J. The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666 (1999).
(
10.1016/S0896-6273(00)80726-6
) / Neuron by DJ Linden (1999) -
Stuart, G., Schiller, J. & Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).
(
10.1111/j.1469-7793.1997.617ba.x
) / J. Physiol. (Lond.) by G Stuart (1997) -
Schwindt, P. C. & Crill, W. E. Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J. Neurophysiol. 77, 2466–2483 (1997).
(
10.1152/jn.1997.77.5.2466
) / J. Neurophysiol. by PC Schwindt (1997) -
Schwindt, P. C. & Crill, W. E. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. J. Neurophysiol. 79, 2432–2446 (1998).
(
10.1152/jn.1998.79.5.2432
) / J. Neurophysiol. by PC Schwindt (1998) -
Golding, N. L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).
(
10.1016/S0896-6273(00)80635-2
) / Neuron by NL Golding (1998) -
Wei, D. -S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 193, 2272–2275 (2001).
(
10.1126/science.1061198
) / Science by D-S Wei (2001) -
Williams, S. R. & Stuart, G. J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).
(
10.1126/science.1067903
) / Science by SR Williams (2002) -
Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).
(
10.1162/neco.1997.9.6.1179
) / Neural Comput. by ML Hines (1997) -
London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nature Neurosci. 4, 853–855 (2001).
(
10.1038/nn0901-853
) / Nature Neurosci. by M London (2001) -
Paré, D., Lebel, E. & Lang, E. J. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78, 1735–1739 (1997).
(
10.1152/jn.1997.78.3.1735
) / J. Neurophysiol. by D Paré (1997) -
Salinas, E. & Sejnowski, T. J. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20, 6193–6209 (2000).
(
10.1523/JNEUROSCI.20-16-06193.2000
) / J. Neurosci. by E Salinas (2000) -
Tiesinga, P. H. E., José, J. V. & Sejnowski, T. J. Comparison of current-driven and conductance-driven neocortical model neurons with hodgkin-huxley voltage-gated channels. Phys. Rev. E 62, 8413–8419 (2000).
(
10.1103/PhysRevE.62.8413
) / Phys. Rev. E by PHE Tiesinga (2000) -
Destexhe, A., Rudolph, M., Fellous, J. M. & Sejnowski, T. J. Fluctuating conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107, 13–24 (2001).
(
10.1016/S0306-4522(01)00344-X
) / Neuroscience by A Destexhe (2001) -
Lin, J. K., Pawelzik, K., Ernst, U. & Sejnowski, T. J. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons. Network 9, 333–344 (1998).
(
10.1088/0954-898X_9_3_004
) / Network by JK Lin (1998) -
Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999).
(
10.1162/089976699300016179
) / Neural Comput. by N Brunel (1999) -
Diesmann, M., Gewaltig, M. -O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999).
(
10.1038/990101
) / Nature by M Diesmann (1999) -
Wang, X. J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999).
(
10.1523/JNEUROSCI.19-21-09587.1999
) / J. Neurosci. by XJ Wang (1999) -
Brunel, N. Persistent activity and the single-cell frequency-current curve in a cortical network model. Network 11, 261–280 (2000).
(
10.1088/0954-898X_11_4_302
) / Network by N Brunel (2000) -
Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comp. Neurosci. 8, 183–208 (2000).
(
10.1023/A:1008925309027
) / J. Comp. Neurosci. by N Brunel (2000) -
Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X. J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).
(
10.1093/cercor/10.9.910
) / Cereb. Cortex by A Compte (2000) -
Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).
(
10.1093/cercor/10.12.1185
) / Cereb. Cortex by I Timofeev (2000) -
Compte, A., Sanchez-Vives, M. V., McCormick, D. A. & Wang, X. J. Cellular and network mechanisms of slow oscillatory activity (1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003).
(
10.1152/jn.00845.2002
) / J. Neurophysiol. by A Compte (2003) -
Shelley, M., McLaughlin, D., Shapley, R. & Wielaard, J. States of high conductance in a large-scale model of the visual cortex. J. Comput. Neurosci. 13, 93–109 (2002).
(
10.1023/A:1020158106603
) / J. Comput. Neurosci. by M Shelley (2002) -
London, M., Schreibman, A., Häusser, M., Larkum, M. E. & Segev, I. The information efficacy of a synapse. Nature Neurosci. 5, 332–340 (2002).
(
10.1038/nn826
) / Nature Neurosci. by M London (2002) -
Hô, N. & Destexhe, A. Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84, 1488–1496 (2000). Theoretical study investigating the effect of synaptic noise on neuronal responsiveness. This was the first demonstration of the contrasting effects of conductance and noise with a suggested link to an attentional mechanism.
(
10.1152/jn.2000.84.3.1488
) / J. Neurophysiol. by N Hô (2000) -
Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS. Nature 373, 33–36 (1995).
(
10.1038/373033a0
) / Nature by K Wiesenfeld (1995) -
Doiron, B., Longtin, A., Berman, N. & Maler, L. Subtractive and divisible inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural Comput. 13, 227–248 (2000).
(
10.1162/089976601300014691
) / Neural Comput. by B Doiron (2000) -
Longtin, A., Doiron, B. & Bulsara, A. R. Noise-induced divisive gain control in neuron models. Biosystems 67,147–156 (2002).
(
10.1016/S0303-2647(02)00073-4
) / Biosystems by A Longtin (2002) -
Stacey, W. C. & Durand, D. M. Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J. Neurophysiol. 86, 1104–1112 (2001). First experimental evidence that synaptic noise can improve signal detection in central neurons.
(
10.1152/jn.2001.86.3.1104
) / J. Neurophysiol. by WC Stacey (2001) -
Rudolph, M. & Destexhe, A. Do neocortical pyramidal neurons display stochastic resonance? J. Comput. Neurosci. 11, 19–42 (2001).
(
10.1023/A:1011200713411
) / J. Comput. Neurosci. by M Rudolph (2001) - Segev, I., Rinzel, J. & Shepherd, G. M. The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries (MIT Press, Cambridge, Massachusetts, 1995). / The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries by I Segev (1995)
-
Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neurosci. 3, 895–903 (2000). Experimental and theoretical study of hippocampal pyramidal neurons showing evidence that the conductance of individual excitatory synapses is scaled according to distance from soma, therefore compensating for dendritic cable filtering.
(
10.1038/78800
) / Nature Neurosci. by JC Magee (2000) -
Rudolph, M., Hô, N. & Destexhe, A. Synaptic background activity affects the dynamics of dendritic integration in model neocortical pyramidal neurons. Neurocomputing 38, 327–333 (2001).
(
10.1016/S0925-2312(01)00356-3
) / Neurocomputing by M Rudolph (2001) -
Rudolph, M. & Destexhe, A. The discharge variability of neocortical neurons during high-conductance states. Neuroscience 119, 855–873 (2003).
(
10.1016/S0306-4522(03)00164-7
) / Neuroscience by M Rudolph (2003) -
Rudolph, M. & Destexhe, A. Gain modulation and frequency locking under conductance noise. Neurocomputing 52, 907–912 (2003).
(
10.1016/S0925-2312(02)00831-7
) / Neurocomputing by M Rudolph (2003) -
Halliday, D. M. Weak, stochastic temporal correlation of large-scale synaptic inputs is a major determinant of neuronal bandwidth. Neural Comput. 12, 693–707 (1999).
(
10.1162/089976600300015754
) / Neural Comput. by DM Halliday (1999) -
Rudolph, M. & Destexhe, A. Correlation detection and resonance in neural systems with distributed noise sources. Phys. Rev. Lett. 86, 3662–3665 (2001).
(
10.1103/PhysRevLett.86.3662
) / Phys. Rev. Lett. by M Rudolph (2001) -
Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995). First experimental demonstration that pairs of neurons can be linked to behavioural changes by modulating the correlation of their firing, with no change in their average firing rate.
(
10.1038/373515a0
) / Nature by E Vaadia (1995) -
deCharms, R. C. & Merzenich, M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996).
(
10.1038/381610a0
) / Nature by RC deCharms (1996) -
Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997).
(
10.1126/science.278.5345.1950
) / Science by A Riehle (1997) -
Rudolph, M. & Destexhe, A. Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J. Comput. Neurosci. 14, 239–251 (2003).
(
10.1023/A:1023245625896
) / J. Comput. Neurosci. by M Rudolph (2003) -
Krüger, J. & Becker, J. D. Recognizing the visual stimulus from neuronal discharges. Trends Neurosci. 14, 282–286 (1991).
(
10.1016/0166-2236(91)90138-K
) / Trends Neurosci. by J Krüger (1991) -
Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).
(
10.1016/S0896-6273(00)80379-7
) / Neuron by M Häusser (1997) -
Harsch, A. & Robinson, P. C. Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J. Neurosci. 20, 6181–6192 (2000).
(
10.1523/JNEUROSCI.20-16-06181.2000
) / J. Neurosci. by A Harsch (2000) -
Kisley, M. A. & Gerstein, G. L. The continuum of operating modes for a passive model neuron. Neural Comput. 11, 1139–1154 (1999).
(
10.1162/089976699300016386
) / Neural Comput. by MA Kisley (1999) -
Marsálek, P., Koch, C. & Maunsell, J. On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl Acad. Sci. USA 94, 735–740 (1997).
(
10.1073/pnas.94.2.735
) / Proc. Natl Acad. Sci. USA by P Marsálek (1997) -
Mel, B. W. Information processing in dendritic trees. Neural Comput. 6, 1031–1085 (1994).
(
10.1162/neco.1994.6.6.1031
) / Neural Comput. by BW Mel (1994) -
Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).
(
10.1523/JNEUROSCI.18-10-03870.1998
) / J. Neurosci. by MN Shadlen (1998) -
Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1, 210–217 (1998).
(
10.1038/659
) / Nature Neurosci. by CF Stevens (1998) -
Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).
(
10.1126/science.7770778
) / Science by ZF Mainen (1995) -
Sharp, A. A., O'Neil, M. B., Abbott, L. F. & Marder, E. The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci. 16, 389–394 (1993).
(
10.1016/0166-2236(93)90004-6
) / Trends Neurosci. by AA Sharp (1993) -
Robinson, H. P. & Kawai, N. Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49, 157–165 (1993).
(
10.1016/0165-0270(93)90119-C
) / J. Neurosci. Methods by HP Robinson (1993) -
Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).
(
10.1016/S0896-6273(02)00820-6
) / Neuron by FS Chance (2002) - Fellous, J. M., Rudolph, M., Destexhe, A. & Sejnowski, T. J. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience (in the press).
-
Prescott, S. A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003).
(
10.1073/pnas.0337591100
) / Proc. Natl Acad. Sci. USA by SA Prescott (2003) - Hasenstaub, A. R., Shu, Y. S., Badoual, M., Bal, T. & McCormick, D. A. The effects of recurrent activity on the responsiveness of cortical neurons to synaptic inputs. Soc. Neurosci. Abst. 753.4 (2002).
-
Salinas, E. & Thier, P. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000).
(
10.1016/S0896-6273(00)00004-0
) / Neuron by E Salinas (2000) -
Steriade, M. Ascending control of thalamic and cortical responsiveness. Int. Rev. Neurobiol. 12, 87–144 (1970).
(
10.1016/S0074-7742(08)60059-8
) / Int. Rev. Neurobiol. by M Steriade (1970) -
Singer, W., Tretter, F. & Cynader, M. The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex. Brain Res. 102, 71–90 (1976).
(
10.1016/0006-8993(76)90576-X
) / Brain Res. by W Singer (1976) -
Treue, S. & Trujillo, C. M. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).
(
10.1038/21176
) / Nature by S Treue (1999) -
Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).
(
10.1113/jphysiol.1997.sp022031
) / J. Physiol. (Lond.) by H Markram (1997) - Rudolph, M. & Destexhe, A. Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput. (in the press).
-
Dean, A. The variability of discharge of simple cells in the cat striate cortex. Exp. Brain Res. 44, 437–440 (1981).
(
10.1007/BF00238837
) / Exp. Brain Res. by A Dean (1981) -
Holt, G. R., Softky, W. R., Koch, C. & Douglas, R. J. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75, 1806–1814 (1996).
(
10.1152/jn.1996.75.5.1806
) / J. Neurophysiol. by GR Holt (1996)
@article{Destexhe_2003, title={The high-conductance state of neocortical neurons in vivo}, volume={4}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn1198}, DOI={10.1038/nrn1198}, number={9}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Destexhe, Alain and Rudolph, Michael and Paré, Denis}, year={2003}, month=sep, pages={739–751} }