Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
Bibliography

Filbin, M. T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Reviews Neuroscience, 4(9), 703–713.

Authors 1
  1. Marie T. Filbin (first)
References 108 Referenced 711
  1. Fitch, M. T. & Silver, J. in CNS Regeneration (eds Tuszynski, M. H. & Kordower, J. H.) 55–88 (Academic, San Diego, 1999). (10.1016/B978-012705070-6/50004-4) / CNS Regeneration by MT Fitch (1999)
  2. Qiu, J., Cai, D. & Filbin, M. T. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29, 166–174 (2000). (10.1002/(SICI)1098-1136(20000115)29:2<166::AID-GLIA10>3.0.CO;2-G) / Glia by J Qiu (2000)
  3. Schwab, M. E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996). (10.1152/physrev.1996.76.2.319) / Physiol. Rev. by ME Schwab (1996)
  4. Huang, D. W., McKerracher, L., Braun, P. E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647 (1999). (10.1016/S0896-6273(00)81118-6) / Neuron by DW Huang (1999)
  5. Ramón y Cajal, S. Cajal's Degeneration & Regeneration of the Nervous System (eds DeFelipe, J. & Jones, E. G.) (Oxford Univ. Press, Oxford, 1928). / Cajal's Degeneration & Regeneration of the Nervous System by S Ramón y Cajal (1928)
  6. Berry, M. Post-injury myelin-breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibl. Anat. 23, 1–11 (1982). The first experimental data that support the suggestion that myelin inhibits axonal regeneration. / Bibl. Anat. by M Berry (1982)
  7. Crutcher, K. A. Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: extensive growth on gray matter but little growth on white matter. Exp. Neurol. 104, 39–54 (1989). (10.1016/0014-4886(89)90007-1) / Exp. Neurol. by KA Crutcher (1989)
  8. Caroni, P. & Schwab, M. E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288 (1988). (10.1083/jcb.106.4.1281) / J. Cell Biol. by P Caroni (1988)
  9. Caroni, P. & Schwab, M. E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85–96 (1988). References 8 and 9 identify inhibitory fractions in myelin and describe the IN-1 monoclonal antibody that neutralizes the inhibition. (10.1016/0896-6273(88)90212-7) / Neuron by P Caroni (1988)
  10. Schnell, L. & Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990). (10.1038/343269a0) / Nature by L Schnell (1990)
  11. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000). (10.1038/35000219) / Nature by MS Chen (2000)
  12. GrandPre, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000). (10.1038/35000226) / Nature by T GrandPre (2000)
  13. Prinjha, R. et al. Inhibitor of neurite outgrowth in humans. Nature 403, 383–384 (2000). References 11–13 describe the cloning of Nogo, a long-sought antigen of the IN-1 monoclonal antibody. (10.1038/35000287) / Nature by R Prinjha (2000)
  14. Huber, A. B., Weinmann, O., Brosamle, C., Oertle, T. & Schwab, M. E. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22, 3553–3567 (2002). (10.1523/JNEUROSCI.22-09-03553.2002) / J. Neurosci. by AB Huber (2002)
  15. Wang, X. et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J. Neurosci. 22, 5505–15 (2002). (10.1523/JNEUROSCI.22-13-05505.2002) / J. Neurosci. by X Wang (2002)
  16. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994). (10.1016/0896-6273(94)90247-X) / Neuron by L McKerracher (1994)
  17. Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994). (10.1016/0896-6273(94)90042-6) / Neuron by G Mukhopadhyay (1994)
  18. Cai, D. et al. Neuronal cyclic amp controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731–4739 (2001). (10.1523/JNEUROSCI.21-13-04731.2001) / J. Neurosci. by D Cai (2001)
  19. de Bellard, M. & Filbin, M. T. Myelin-associated glycoprotein, MAG, selectively binds several neuronal proteins. J. Neurosci. Res. 56, 213–218 (1999). (10.1002/(SICI)1097-4547(19990415)56:2<213::AID-JNR11>3.0.CO;2-U) / J. Neurosci. Res. by M de Bellard (1999)
  20. Turnley, A. M. & Bartlett, P. F. MAG and MOG enhance neurite outgrowth of embryonic mouse spinal cord neurons. Neuroreport 9, 1987–1990 (1998). (10.1097/00001756-199806220-00013) / Neuroreport by AM Turnley (1998)
  21. Johnson, P. W. et al. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron 3, 377–385 (1989). (10.1016/0896-6273(89)90262-6) / Neuron by PW Johnson (1989)
  22. Salzer, J. L., Holmes, W. P. & Colman, D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J. Cell Biol. 104, 957–965 (1987). (10.1083/jcb.104.4.957) / J. Cell Biol. by JL Salzer (1987)
  23. Salzer, J. L. et al. Structure and function of the myelin-associated glycoproteins. Ann. NY Acad. Sci. 605, 302–312 (1990). (10.1111/j.1749-6632.1990.tb42404.x) / Ann. NY Acad. Sci. by JL Salzer (1990)
  24. Kelm, S. et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972 (1994). (10.1016/S0960-9822(00)00220-7) / Curr. Biol. by S Kelm (1994)
  25. Tang, S. et al. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J. Cell Biol. 138, 1355–1366 (1997). (10.1083/jcb.138.6.1355) / J. Cell Biol. by S Tang (1997)
  26. Trapp, B. D. Distribution of the myelin-associated glycoprotein and P0 protein during myelin compaction in quaking mouse peripheral nerve. J. Cell Biol. 107, 675–685 (1988). (10.1083/jcb.107.2.675) / J. Cell Biol. by BD Trapp (1988)
  27. Willison, H. J. et al. Myelin-associated glycoprotein and related glycoconjugates in developing cat peripheral nerve: a correlative biochemical and morphometric study. J. Neurochem. 49, 1853–1862 (1987). (10.1111/j.1471-4159.1987.tb02447.x) / J. Neurochem. by HJ Willison (1987)
  28. Wang, K. C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002). (10.1038/nature00867) / Nature by KC Wang (2002)
  29. Habib, A. A. et al. Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system. J. Neurochem. 70, 1704–1711 (1998). (10.1046/j.1471-4159.1998.70041704.x) / J. Neurochem. by AA Habib (1998)
  30. Mikol, D. D., Gulcher, J. R. & Stefansson, K. The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate. J. Cell Biol. 110, 471–479 (1990). (10.1083/jcb.110.2.471) / J. Cell Biol. by DD Mikol (1990)
  31. Kottis, V. et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J. Neurochem. 82, 1566–1569 (2002). (10.1046/j.1471-4159.2002.01146.x) / J. Neurochem. by V Kottis (2002)
  32. Fournier, A. E., GrandPre, T. & Strittmatter, S. M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001). Identifies the first receptor for an inhibitor found in myelin. (10.1038/35053072) / Nature by AE Fournier (2001)
  33. Josephson, A. et al. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans. J. Comp. Neurol. 453, 292–304 (2002). (10.1002/cne.10408) / J. Comp. Neurol. by A Josephson (2002)
  34. Oertle, T. et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J. Neurosci. 23, 5393–5406 (2003). (10.1523/JNEUROSCI.23-13-05393.2003) / J. Neurosci. by T Oertle (2003)
  35. Liu, B. P., Fournier, A., GrandPre, T. & Strittmatter, S. M. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193 (2002). (10.1126/science.1073031) / Science by BP Liu (2002)
  36. Domeniconi, M. et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290 (2002). References 35 and 36 reveal, surprisingly, that Mag interacts with the Ngr, and reference 34 shows that OMgp also interacts with this receptor. (10.1016/S0896-6273(02)00770-5) / Neuron by M Domeniconi (2002)
  37. Yamashita, T., Higuchi, H. & Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570 (2002). (10.1083/jcb.200202010) / J. Cell Biol. by T Yamashita (2002)
  38. Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. & He, Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78 (2002). (10.1038/nature01176) / Nature by KC Wang (2002)
  39. Wong, S. T. et al. A p75NTR and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nature Neurosci. 5, 1302–1308 (2002). References 37–39 identify the p75NTR as a transducing partner of Ngr. (10.1038/nn975) / Nature Neurosci. by ST Wong (2002)
  40. He, X. L. et al. Structure of the Nogo receptor ectodomain. A recognition module implicated in myelin inhibition. Neuron 38, 177–185 (2003). (10.1016/S0896-6273(03)00232-0) / Neuron by XL He (2003)
  41. Bartsch, U. et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15, 1375–1381 (1995). (10.1016/0896-6273(95)90015-2) / Neuron by U Bartsch (1995)
  42. Li, M. et al. Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J. Neurosci. Res. 46, 404–414 (1996). (10.1002/(SICI)1097-4547(19961115)46:4<404::AID-JNR2>3.0.CO;2-K) / J. Neurosci. Res. by M Li (1996)
  43. Bregman, B. S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995). (10.1038/378498a0) / Nature by BS Bregman (1995)
  44. Schnell, L. & Schwab, M. E. Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur. J. Neurosci. 5, 1156–1171 (1993). (10.1111/j.1460-9568.1993.tb00970.x) / Eur. J. Neurosci. by L Schnell (1993)
  45. GrandPre, T., Li, S. & Strittmatter, S. M. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547–551 (2002). (10.1038/417547a) / Nature by T GrandPre (2002)
  46. Kim, J. E., Li, S., GrandPre, T., Qiu, D. & Strittmatter, S. M. Axon regeneration in young adult mice lacking nogo-a/b. Neuron 38, 187–199 (2003). (10.1016/S0896-6273(03)00147-8) / Neuron by JE Kim (2003)
  47. Simonen, M. et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38, 201–211 (2003). (10.1016/S0896-6273(03)00226-5) / Neuron by M Simonen (2003)
  48. Zheng, B. et al. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38, 213–224 (2003). References 46–48 describe different phenotypes when Nogo is knocked out. (10.1016/S0896-6273(03)00225-3) / Neuron by B Zheng (2003)
  49. Trapp, B. D. Myelin-associated glycoprotein. Location and potential functions. Ann. NY Acad. Sci. 605, 29–43 (1990). (10.1111/j.1749-6632.1990.tb42378.x) / Ann. NY Acad. Sci. by BD Trapp (1990)
  50. Apostolski, S. et al. Identification of Gal(β1–3)GalNAc bearing glycoproteins at the nodes of Ranvier in peripheral nerve. J. Neurosci. Res. 38, 134–141 (1994). (10.1002/jnr.490380203) / J. Neurosci. Res. by S Apostolski (1994)
  51. Josephson, A., Widenfalk, J., Widmer, H. W., Olson, L. & Spenger, C. NOGO mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury. Exp. Neurol. 169, 319–328 (2001). (10.1006/exnr.2001.7659) / Exp. Neurol. by A Josephson (2001)
  52. McMahon, S. B., Armanini, M. P., Ling, L. H. & Phillips, H. S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12, 1161–1171 (1994). (10.1016/0896-6273(94)90323-9) / Neuron by SB McMahon (1994)
  53. Wright, D. E. & Snider, W. D. Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J. Comp. Neurol. 351, 329–338 (1995). (10.1002/cne.903510302) / J. Comp. Neurol. by DE Wright (1995)
  54. Ernfors, P., Henschen, A., Olson, L. & Persson, H. Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2, 1605–1613 (1989). (10.1016/0896-6273(89)90049-4) / Neuron by P Ernfors (1989)
  55. Koliatsos, V. E., Crawford, T. O. & Price, D. L. Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res. 549, 297–304 (1991). (10.1016/0006-8993(91)90471-7) / Brain Res. by VE Koliatsos (1991)
  56. Walsh, G. S., Krol, K. M., Crutcher, K. A. & Kawaja, M. D. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 19, 4155–4168 (1999). (10.1523/JNEUROSCI.19-10-04155.1999) / J. Neurosci. by GS Walsh (1999)
  57. Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997). (10.1038/37776) / Nature by SJ Davies (1997)
  58. Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999). (10.1523/JNEUROSCI.19-14-05810.1999) / J. Neurosci. by SJ Davies (1999)
  59. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999). (10.1523/JNEUROSCI.19-17-07537.1999) / J. Neurosci. by M Lehmann (1999)
  60. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998). (10.1126/science.279.5350.509) / Science by A Hall (1998)
  61. Jin, Z. & Strittmatter, S. M. Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256–6263 (1997). (10.1523/JNEUROSCI.17-16-06256.1997) / J. Neurosci. by Z Jin (1997)
  62. Fournier, A. E., Takizawa, B. T. & Strittmatter, S. M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23, 1416–1423 (2003). (10.1523/JNEUROSCI.23-04-01416.2003) / J. Neurosci. by AE Fournier (2003)
  63. Niederost, B., Oertle, T., Fritsche, J., McKinney, R. A. & Bandtlow, C. E. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci. 22, 10368–10376 (2002). (10.1523/JNEUROSCI.22-23-10368.2002) / J. Neurosci. by B Niederost (2002)
  64. Vinson, M. et al. Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J. Biol. Chem. 276, 20280–20285 (2001). (10.1074/jbc.M100345200) / J. Biol. Chem. by M Vinson (2001)
  65. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci. 6, 461–467 (2003). (10.1038/nn1045) / Nature Neurosci. by T Yamashita (2003)
  66. Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002). (10.1523/JNEUROSCI.22-15-06570.2002) / J. Neurosci. by P Dergham (2002)
  67. Igarashi, M., Strittmatter, S. M., Vartanian, T. & Fishman, M. C. Mediation by G proteins of signals that cause collapse of growth cones. Science 259, 77–79 (1993). (10.1126/science.8418498) / Science by M Igarashi (1993)
  68. Cai, D., Shen, Y., de Bellard, M., Tang, S. & Filbin, M. T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999). (10.1016/S0896-6273(00)80681-9) / Neuron by D Cai (1999)
  69. Bandtlow, C. E., Schmidt, M. F., Hassinger, T. D., Schwab, M. E. & Kater, S. B. Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 259, 80–83 (1993). (10.1126/science.8418499) / Science by CE Bandtlow (1993)
  70. Hempstead, B. L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002). (10.1016/S0959-4388(02)00321-5) / Curr. Opin. Neurobiol. by BL Hempstead (2002)
  71. Fournier, A. E., Gould, G. C., Liu, B. P. & Strittmatter, S. M. Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J. Neurosci. 22, 8876–8883 (2002). (10.1523/JNEUROSCI.22-20-08876.2002) / J. Neurosci. by AE Fournier (2002)
  72. Winton, M. J., Dubreuil, C. I., Lasko, D., Leclerc, N. & McKerracher, L. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J. Biol. Chem. 277, 32820–32829 (2002). (10.1074/jbc.M201195200) / J. Biol. Chem. by MJ Winton (2002)
  73. Bandtlow, C. E. Regeneration in the central nervous system. Exp. Gerontol. 38, 79–86 (2003). (10.1016/S0531-5565(02)00165-1) / Exp. Gerontol. by CE Bandtlow (2003)
  74. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998). (10.1126/science.281.5382.1515) / Science by H Song (1998)
  75. Ramer, M. S., Priestley, J. V. & McMahon, S. B. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312–316 (2000). (10.1038/35002084) / Nature by MS Ramer (2000)
  76. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002). This study, as well as reference 96, demonstrates for the first time that elevation of cAMP in vivo , at the cell body, can induce spinal axon regeneration. (10.1016/S0896-6273(02)00730-4) / Neuron by J Qiu (2002)
  77. Cai, D. et al. Arginase I and polyamines are downstream from cyclic AMP in the pathway that overcomes inhibition of axonal regeneration by Mag and myelin in vitro. Neuron 35, 711–719 (2002). (10.1016/S0896-6273(02)00826-7) / Neuron by D Cai (2002)
  78. Chu, P. J., Saito, H. & Abe, K. Polyamines promote regeneration of injured axons of cultured rat hippocampal neurons. Brain Res. 673, 233–241 (1995). (10.1016/0006-8993(94)01419-I) / Brain Res. by PJ Chu (1995)
  79. Dornay, M., Gilad, V. H., Shiler, I. & Gilad, G. M. Early polyamine treatment accelerates regeneration of rat sympathetic neurons. Exp. Neurol. 92, 665–674 (1986). (10.1016/0014-4886(86)90307-9) / Exp. Neurol. by M Dornay (1986)
  80. Kauppila, T., Stenberg, D. & Porkka-Heiskanen, T. Putative stimulants for functional recovery after neural trauma: only spermine was effective. Exp. Neurol. 99, 50–58 (1988). (10.1016/0014-4886(88)90126-4) / Exp. Neurol. by T Kauppila (1988)
  81. Banan, A., McCormack, S. A. & Johnson, L. R. Polyamines are required for microtubule formation during gastric mucosal healing. Am. J. Physiol. 274, G879–885 (1998). / Am. J. Physiol. by A Banan (1998)
  82. Kaminska, B., Kaczmarek, L. & Grzelakowska-Sztabert, B. Inhibitors of polyamine biosynthesis affect the expression of genes encoding cytoskeletal proteins. FEBS Lett. 304, 198–200 (1992). (10.1016/0014-5793(92)80618-Q) / FEBS Lett. by B Kaminska (1992)
  83. Wolff, J. Promotion of microtubule assembly by oligocations: cooperativity between charged groups. Biochemistry 37, 10722–10729 (1998). (10.1021/bi980400n) / Biochemistry by J Wolff (1998)
  84. Williams, K. Interactions of polyamines with ion channels. Biochem. J. 325, 289–297 (1997). (10.1042/bj3250289) / Biochem. J. by K Williams (1997)
  85. Chao, J. et al. N1-dansyl-spermine and N1-(n-octanesulfonyl)-spermine, novel glutamate receptor antagonists: block and permeation of N-methyl-D-aspartate receptors. Mol. Pharmacol. 51, 861–871 (1997). (10.1124/mol.51.5.861) / Mol. Pharmacol. by J Chao (1997)
  86. Kashiwagi, K., Pahk, A. J., Masuko, T., Igarashi, K. & Williams, K. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol. Pharmacol. 52, 701–713 (1997). (10.1124/mol.52.4.701) / Mol. Pharmacol. by K Kashiwagi (1997)
  87. Williams, K., Zappia, A. M., Pritchett, D. B., Shen, Y. M. & Molinoff, P. B. Sensitivity of the N-methyl-D–aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45, 803–809 (1994). / Mol. Pharmacol. by K Williams (1994)
  88. Cohen, S. (ed.) A Guide to the Polyamines (Oxford Univ. Press, New York, 1998). / A Guide to the Polyamines by S Cohen (1998)
  89. Aizenman, C. D., Munoz-Elias, G. & Cline, H. T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002). (10.1016/S0896-6273(02)00674-8) / Neuron by CD Aizenman (2002)
  90. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001). (10.1016/S0896-6273(01)00217-3) / Neuron by G Ming (2001)
  91. Bregman, B. S. & Goldberger, M. E. Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science 217, 553–555 (1982). (10.1126/science.7089581) / Science by BS Bregman (1982)
  92. Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function. Exp. Neurol. 116, 40–51 (1992). (10.1016/0014-4886(92)90174-O) / Exp. Neurol. by E Kunkel-Bagden (1992)
  93. Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999). Shows that dorsal column axons will regenerate after a peripheral conditioning lesion without a peripheral nerve graft at the lesion site. (10.1016/S0896-6273(00)80755-2) / Neuron by S Neumann (1999)
  94. Richardson, P. M. & Issa, V. M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984). (10.1038/309791a0) / Nature by PM Richardson (1984)
  95. DeBellard, M. E., Tang, S., Mukhopadhyay, G., Shen, Y. J. & Filbin, M. T. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. 7, 89–101 (1996). (10.1006/mcne.1996.0007) / Mol. Cell. Neurosci. by ME DeBellard (1996)
  96. Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A. I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002). (10.1016/S0896-6273(02)00702-X) / Neuron by S Neumann (2002)
  97. Bonilla, I. E., Tanabe, K. & Strittmatter, S. M. Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J. Neurosci. 22, 1303–1315 (2002). (10.1523/JNEUROSCI.22-04-01303.2002) / J. Neurosci. by IE Bonilla (2002)
  98. Schreyer, D. J. & Skene, J. H. Fate of GAP-43 in ascending spinal axons of DRG neurons after peripheral nerve injury: delayed accumulation and correlation with regenerative potential. J. Neurosci. 11, 3738–3751 (1991). (10.1523/JNEUROSCI.11-12-03738.1991) / J. Neurosci. by DJ Schreyer (1991)
  99. Schreyer, D. J. & Skene, J. H. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J. Neurobiol. 24, 959–970 (1993). (10.1002/neu.480240709) / J. Neurobiol. by DJ Schreyer (1993)
  100. Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P. & Skene, J. H. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature Neurosci. 4, 38–43 (2001). (10.1038/82881) / Nature Neurosci. by HM Bomze (2001)
  101. Scherer, S. S. & Salzer, J. L. in Glial Cell Development; Basic Principles and Clinical Relevance (eds Jessen, K. R. & Richardson, W. D.) 165–185 (Bios Scientific Publishers, Oxford, 1996). / Glial Cell Development; Basic Principles and Clinical Relevance by SS Scherer (1996)
  102. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998). (10.1038/nm0798-814) / Nature Med. by O Rapalino (1998)
  103. Leskovar, A., Moriarty, L. J., Turek, J. J., Schoenlein, I. A. & Borgens, R. B. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems. J. Exp. Biol. 203, 1783–1795 (2000). (10.1242/jeb.203.12.1783) / J. Exp. Biol. by A Leskovar (2000)
  104. Kelm, S. et al. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur. J. Biochem. 255, 663–672 (1998). (10.1046/j.1432-1327.1998.2550663.x) / Eur. J. Biochem. by S Kelm (1998)
  105. Collins, B. E. et al. Sialic acid specificity of myelin-associated glycoprotein binding. J. Biol. Chem. 272, 1248–1255 (1997). (10.1074/jbc.272.2.1248) / J. Biol. Chem. by BE Collins (1997)
  106. Vyas, A. A. et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc. Natl Acad. Sci. USA 99, 8412–8417 (2002). (10.1073/pnas.072211699) / Proc. Natl Acad. Sci. USA by AA Vyas (2002)
  107. Yang, L. J. et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl Acad. Sci. USA 93, 814–818 (1996). (10.1073/pnas.93.2.814) / Proc. Natl Acad. Sci. USA by LJ Yang (1996)
  108. Bandtlow, C. E. & Loschinger, J. Developmental changes in neuronal responsiveness to the CNS myelin-associated neurite growth inhibitor NI-35/250. Eur. J. Neurosci. 9, 2743–2752 (1997). (10.1111/j.1460-9568.1997.tb01703.x) / Eur. J. Neurosci. by CE Bandtlow (1997)
Dates
Type When
Created 22 years ago (Sept. 1, 2003, 1:20 p.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:50 a.m.)
Indexed 1 day, 19 hours ago (Sept. 3, 2025, 6:39 a.m.)
Issued 22 years ago (Sept. 1, 2003)
Published 22 years ago (Sept. 1, 2003)
Published Print 22 years ago (Sept. 1, 2003)
Funders 0

None

@article{Filbin_2003, title={Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS}, volume={4}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/nrn1195}, DOI={10.1038/nrn1195}, number={9}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Filbin, Marie T.}, year={2003}, month=sep, pages={703–713} }