Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
References
77
Referenced
149
-
Nierman, W. C. et al. Complete genome sequence of Caulobacter crescentus. Proc. Natl Acad. Sci. USA 98, 4136–4141 (2001).
(
10.1073/pnas.061029298
) / Proc. Natl Acad. Sci. USA by WC Nierman (2001) -
Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl Acad. Sci. USA 99, 4632–4637 (2002).
(
10.1073/pnas.062065699
) / Proc. Natl Acad. Sci. USA by MT Laub (2002) -
Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000). First application of whole-genome DNA microarrays to the study of global gene expression patterns in wild-type and mutant Caulobacter.
(
10.1126/science.290.5499.2144
) / Science by MT Laub (2000) -
Grunenfelder, B. et al. Proteomic analysis of the bacterial cell cycle. Proc. Natl Acad. Sci. USA 98, 4681–4686 (2001).
(
10.1073/pnas.071538098
) / Proc. Natl Acad. Sci. USA by B Grunenfelder (2001) -
Ireland, M. M., Karty, J. A., Quardokus, E. M., Reilly, J. P. & Brun, Y. V. Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol. Microbiol. 45, 1029–1041 (2002).
(
10.1046/j.1365-2958.2002.03071.x
) / Mol. Microbiol. by MM Ireland (2002) -
Molloy, M. P. et al. Profiling the alkaline membrane proteome of Caulobacter crescentus with two-dimensional electrophoresis and mass spectrometry. Proteomics 2, 899–910 (2002).
(
10.1002/1615-9861(200207)2:7<899::AID-PROT899>3.0.CO;2-Y
) / Proteomics by MP Molloy (2002) -
Shapiro, L., McAdams, H. H. & Losick, R. Generating and exploiting polarity in bacteria. Science 298, 1942–1946 (2002). An outstanding review of the molecular mechanisms used to produce, maintain and use asymmetry in bacteria.
(
10.1126/science.1072163
) / Science by L Shapiro (2002) -
Robertson, G. T. et al. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J. Bacteriol. 182, 3482–3489 (2000).
(
10.1128/JB.182.12.3482-3489.2000
) / J. Bacteriol. by GT Robertson (2000) -
Wright, R., Stephens, C. & Shapiro, L. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J. Bacteriol. 179, 5869–5877 (1997).
(
10.1128/jb.179.18.5869-5877.1997
) / J. Bacteriol. by R Wright (1997) -
Kahng, L. S. & Shapiro, L. The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J. Bacteriol. 183, 3065–3075 (2001).
(
10.1128/JB.183.10.3065-3075.2001
) / J. Bacteriol. by LS Kahng (2001) -
Kahng, L. S. & Shapiro, L. Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J. Bacteriol. 185, 3384–3391 (2003).
(
10.1128/JB.185.11.3384-3391.2003
) / J. Bacteriol. by LS Kahng (2003) -
Bellefontaine, A. F. et al. Plasticity of a transcriptional regulation network among α-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol. Microbiol. 43, 945–960 (2002).
(
10.1046/j.1365-2958.2002.02777.x
) / Mol. Microbiol. by AF Bellefontaine (2002) -
Brassinga, A. K. et al. Conserved response regulator CtrA and IHF binding sites in the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii chromosomal replication origins. J. Bacteriol. 184, 5789–5799 (2002).
(
10.1128/JB.184.20.5789-5799.2002
) / J. Bacteriol. by AK Brassinga (2002) -
Barnett, M. J., Hung, D. Y., Reisenauer, A., Shapiro, L. & Long, S. R. A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. J. Bacteriol. 183, 3204–3210 (2001).
(
10.1128/JB.183.10.3204-3210.2001
) / J. Bacteriol. by MJ Barnett (2001) - Gober, J. W. & England, J. C. in Prokaryotic Development (eds. Brun, Y. V. & Shimkets, L. J.) 319–339 (ASM Press, Washington DC, 2000). A comprehensive review of the intricate mechanisms regulating flagellar assembly in Caulobacter. / Prokaryotic Development by JW Gober (2000)
-
Skerker, J. M. & Shapiro, L. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J. 19, 3223–3234 (2000).
(
10.1093/emboj/19.13.3223
) / EMBO J. by JM Skerker (2000) -
Jenal, U. & Fuchs, T. An essential protease involved in bacterial cell-cycle control. EMBO J. 17, 5658–5669 (1998).
(
10.1093/emboj/17.19.5658
) / EMBO J. by U Jenal (1998) -
Kelly, A. J., Sackett, M. J., Din, N., Quardokus, E. & Brun, Y. V. Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12, 880–893 (1998).
(
10.1101/gad.12.6.880
) / Genes Dev. by AJ Kelly (1998) -
Stephens, C., Reisenauer, A., Wright, R. & Shapiro, L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc. Natl Acad. Sci. USA 93, 1210–1214 (1996).
(
10.1073/pnas.93.3.1210
) / Proc. Natl Acad. Sci. USA by C Stephens (1996) -
Quon, K. C., Marczynski, G. T. & Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84, 83–93 (1996). A clever genetic screen identified the essential regulator CtrA and demonstrated its role in controlling DNA replication and cell division in Caulobacter.
(
10.1016/S0092-8674(00)80995-2
) / Cell by KC Quon (1996) -
Siam, R. & Marczynski, G. T. Glutamate at the phosphorylation site of response regulator CtrA provides essential activities without increasing DNA binding. Nucleic Acids Res. 31, 1775–1779 (2003).
(
10.1093/nar/gkg271
) / Nucleic Acids Res. by R Siam (2003) -
Domian, I. J., Quon, K. C. & Shapiro, L. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415–424 (1997). Shows that a master regulator in Caulobacter , CtrA, is subject to multiple, redundant levels of regulation.
(
10.1016/S0092-8674(00)80502-4
) / Cell by IJ Domian (1997) -
Reisenauer, A. & Shapiro, L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J. 21, 4969–4977 (2002).
(
10.1093/emboj/cdf490
) / EMBO J. by A Reisenauer (2002) -
Ryan, K. R., Judd, E. M. & Shapiro, L. The CtrA response regulator essential for Caulobacter crescentus cell-cycle progression requires a bipartite degradation signal for temporally controlled proteolysis. J. Mol. Biol. 324, 443–455 (2002).
(
10.1016/S0022-2836(02)01042-2
) / J. Mol. Biol. by KR Ryan (2002) -
Hung, D. Y. & Shapiro, L. A signal transduction protein cues proteolytic events critical to Caulobacter cell cycle progression. Proc. Natl Acad. Sci. USA 99, 13160–13165 (2002).
(
10.1073/pnas.202495099
) / Proc. Natl Acad. Sci. USA by DY Hung (2002) -
Wu, J., Ohta, N. & Newton, A. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter. Proc. Natl Acad. Sci. USA 95, 1443–1448 (1998). Another sophisticated genetic screen that identified the essential master regulator CtrA and placed it in the context of previously studied two-component signalling systems.
(
10.1073/pnas.95.4.1443
) / Proc. Natl Acad. Sci. USA by J Wu (1998) -
Wu, J., Ohta, N., Zhao, J. L. & Newton, A. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc. Natl Acad. Sci. USA 96, 13068–13073 (1999).
(
10.1073/pnas.96.23.13068
) / Proc. Natl Acad. Sci. USA by J Wu (1999) -
Quon, K. C., Yang, B., Domian, I. J., Shapiro, L. & Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl Acad. Sci. USA 95, 120–125 (1998).
(
10.1073/pnas.95.1.120
) / Proc. Natl Acad. Sci. USA by KC Quon (1998) -
Domian, I. J., Reisenauer, A. & Shapiro, L. Feedback control of a master bacterial cell-cycle regulator. Proc. Natl Acad. Sci. USA 96, 6648–6653 (1999).
(
10.1073/pnas.96.12.6648
) / Proc. Natl Acad. Sci. USA by IJ Domian (1999) -
Judd, E. M., Ryan, K. R., Moerner, W. E., Shapiro, L. & McAdams, H. H. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc. Natl Acad. Sci. USA 100, 8235–8240 (2003).
(
10.1073/pnas.1433105100
) / Proc. Natl Acad. Sci. USA by EM Judd (2003) -
Levchenko, I., Seidel, M., Sauer, R. T. & Baker, T. A. A specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000).
(
10.1126/science.289.5488.2354
) / Science by I Levchenko (2000) -
Zhou, Y., Gottesman, S., Hoskins, J. R., Maurizi, M. R. & Wickner, S. The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev. 15, 627–637 (2001).
(
10.1101/gad.864401
) / Genes Dev. by Y Zhou (2001) -
Jacobs, C., Domian, I. J., Maddock, J. R. & Shapiro, L. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97, 111–120 (1999). Uses fluorescence microscopy to observe the dynamic localization of a key regulatory molecule, and shows that spatially, bacterial cells can be highly organized.
(
10.1016/S0092-8674(00)80719-9
) / Cell by C Jacobs (1999) -
Jacobs, C., Ausmees, N., Cordwell, S. J., Shapiro, L. & Laub, M. T. Functions of the CckA histidine kinase in Caulobacter cell cycle control. Mol. Microbiol. 47, 1279–1290 (2003).
(
10.1046/j.1365-2958.2003.03379.x
) / Mol. Microbiol. by C Jacobs (2003) -
Sommer, J. M. & Newton, A. Pseudoreversion analysis indicates a direct role of cell division genes in polar morphogenesis and differentiation in Caulobacter crescentus. Genetics 129, 623–630 (1991).
(
10.1093/genetics/129.3.623
) / Genetics by JM Sommer (1991) -
Ohta, N. & Newton, A. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J. Bacteriol. 185, 4424–4431 (2003).
(
10.1128/JB.185.15.4424-4431.2003
) / J. Bacteriol. by N Ohta (2003) -
Hecht, G. B., Lane, T., Ohta, N., Sommer, J. M. & Newton, A. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J. 14, 3915–3924 (1995).
(
10.1002/j.1460-2075.1995.tb00063.x
) / EMBO J. by GB Hecht (1995) -
Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552 (1991).
(
10.1016/0092-8674(91)90238-T
) / Cell by D Burbulys (1991) -
Reisenauer, A., Quon, K. & Shapiro, L. The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle. J. Bacteriol. 181, 2430–2439 (1999).
(
10.1128/JB.181.8.2430-2439.1999
) / J. Bacteriol. by A Reisenauer (1999) -
Sackett, M. J., Kelly, A. J. & Brun, Y. V. Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. Mol. Microbiol. 28, 421–434 (1998).
(
10.1046/j.1365-2958.1998.00753.x
) / Mol. Microbiol. by MJ Sackett (1998) -
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).
(
10.1126/science.290.5500.2306
) / Science by B Ren (2000) -
Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).
(
10.1038/35054095
) / Nature by VR Iyer (2001) -
Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).
(
10.1016/S0092-8674(01)00494-9
) / Cell by I Simon (2001) -
Osley, M. A. & Newton, A. Temporal control of the cell cycle in Caulobacter crescentus: roles of DNA chain elongation and completion. J. Mol. Biol. 138, 109–128 (1980).
(
10.1016/S0022-2836(80)80007-6
) / J. Mol. Biol. by MA Osley (1980) -
Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989). An authoritative discussion of checkpoints, from a definition to how they function in controlling cell-cycle progression.
(
10.1126/science.2683079
) / Science by LH Hartwell (1989) - Berget, P. B. & King, J. in Bacteriophage T4 (eds Mathews, C. K., Kutter, E. M., Mosig, G. & Berget, P. B.) 246–258 (ASM Press, Washington DC, 1983). / Bacteriophage T4 by PB Berget (1983)
-
Autret, S., Levine, A., Holland, I. B. & Seror, S. J. Cell cycle checkpoints in bacteria. Biochimie 79, 549–554 (1997).
(
10.1016/S0300-9084(97)82002-0
) / Biochimie by S Autret (1997) -
Burton, P. & Holland, I. B. Two pathways of division inhibition in UV-irradiated E. coli. Mol. Gen. Genet. 190, 309–314 (1983).
(
10.1007/BF00330656
) / Mol. Gen. Genet. by P Burton (1983) -
Osley, M. A., Sheffery, M. & Newton, A. Regulation of flagellin synthesis in the cell cycle of caulobacter: dependence on DNA replication. Cell 12, 393–400 (1977).
(
10.1016/0092-8674(77)90115-5
) / Cell by MA Osley (1977) -
Wortinger, M., Sackett, M. J. & Brun, Y. V. CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. EMBO J. 19, 4503–4512 (2000).
(
10.1093/emboj/19.17.4503
) / EMBO J. by M Wortinger (2000) - Mohl, D. A. & Gober, J. W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675–684 (1997). / Cell by DA Mohl (1997)
-
Mohl, D. A., Easter, J. Jr & Gober, J. W. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol. Microbiol. 42, 741–755 (2001).
(
10.1046/j.1365-2958.2001.02643.x
) / Mol. Microbiol. by DA Mohl (2001) -
Ward, D. & Newton, A. Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus. Mol. Microbiol. 26, 897–910 (1997).
(
10.1046/j.1365-2958.1997.6242005.x
) / Mol. Microbiol. by D Ward (1997) -
Jensen, R. B. & Shapiro, L. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl Acad. Sci. USA 96, 10661–10666 (1999).
(
10.1073/pnas.96.19.10661
) / Proc. Natl Acad. Sci. USA by RB Jensen (1999) -
Woldringh, C. L., Mulder, E., Huls, P. G. & Vischer, N. Toporegulation of bacterial division according to the nucleoid occlusion model. Res. Microbiol. 142, 309–320 (1991).
(
10.1016/0923-2508(91)90046-D
) / Res. Microbiol. by CL Woldringh (1991) -
Rudner, D. Z. & Losick, R. Morphological coupling in development: lessons from prokaryotes. Dev. Cell 1, 733–742 (2001).
(
10.1016/S1534-5807(01)00094-6
) / Dev. Cell by DZ Rudner (2001) -
Mangan, E. K., Bartamian, M. & Gober, J. W. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus. J. Bacteriol. 177, 3176–3184 (1995).
(
10.1128/jb.177.11.3176-3184.1995
) / J. Bacteriol. by EK Mangan (1995) -
Muir, R. E. & Gober, J. W. Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus. Mol. Microbiol. 41, 117–130 (2001).
(
10.1046/j.1365-2958.2001.02506.x
) / Mol. Microbiol. by RE Muir (2001) -
Muir, R. E., O'Brien, T. M. & Gober, J. W. The Caulobacter crescentus flagellar gene, fliX, encodes a novel transacting factor that couples flagellar assembly to transcription. Mol. Microbiol. 39, 1623–1637 (2001).
(
10.1046/j.1365-2958.2001.02351.x
) / Mol. Microbiol. by RE Muir (2001) -
Muir, R. E. & Gober, J. W. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus. Mol. Microbiol. 43, 597–615 (2002).
(
10.1046/j.1365-2958.2002.02728.x
) / Mol. Microbiol. by RE Muir (2002) -
Anderson, D. K. & Newton, A. Post-transcriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. J. Bacteriol. 179, 2281–2288 (1997).
(
10.1128/jb.179.7.2281-2288.1997
) / J. Bacteriol. by DK Anderson (1997) -
Anderson, P. E. & Gober, J. W. FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA. Mol. Microbiol. 38, 41–52 (2000).
(
10.1046/j.1365-2958.2000.02108.x
) / Mol. Microbiol. by PE Anderson (2000) -
Mangan, E. K. et al. FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J. Bacteriol. 181, 6160–6170 (1999).
(
10.1128/JB.181.19.6160-6170.1999
) / J. Bacteriol. by EK Mangan (1999) -
Shapiro, L. & Losick, R. Dynamic spatial regulation in the bacterial cell. Cell 100, 89–98 (2000).
(
10.1016/S0092-8674(00)81686-4
) / Cell by L Shapiro (2000) -
Wheeler, R. T. & Shapiro, L. Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol. Cell 4, 683–694 (1999).
(
10.1016/S1097-2765(00)80379-2
) / Mol. Cell by RT Wheeler (1999) -
Aldridge, P., Paul, R., Goymer, P., Rainey, P. & Jenal, U. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol. Microbiol. 47, 1695–1708 (2003).
(
10.1046/j.1365-2958.2003.03401.x
) / Mol. Microbiol. by P Aldridge (2003) -
Hecht, G. B. & Newton, A. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177, 6223–6229 (1995).
(
10.1128/jb.177.21.6223-6229.1995
) / J. Bacteriol. by GB Hecht (1995) -
Aldridge, P. & Jenal, U. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Mol. Microbiol. 32, 379–391 (1999).
(
10.1046/j.1365-2958.1999.01358.x
) / Mol. Microbiol. by P Aldridge (1999) -
Sommer, J. M. & Newton, A. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J. Bacteriol. 171, 392–401 (1989).
(
10.1128/jb.171.1.392-401.1989
) / J. Bacteriol. by JM Sommer (1989) -
Wang, S. P., Sharma, P. L., Schoenlein, P. V. & Ely, B. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 90, 630–634 (1993).
(
10.1073/pnas.90.2.630
) / Proc. Natl Acad. Sci. USA by SP Wang (1993) -
Viollier, P. H., Sternheim, N. & Shapiro, L. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc. Natl Acad. Sci. USA 99, 13831–13836 (2002).
(
10.1073/pnas.182411999
) / Proc. Natl Acad. Sci. USA by PH Viollier (2002) -
Hinz, A. J., Larson, D. E., Smith, C. S. & Brun, Y. V. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. Mol. Microbiol. 47, 929–941 (2003).
(
10.1046/j.1365-2958.2003.03349.x
) / Mol. Microbiol. by AJ Hinz (2003) -
Crymes, W. B. Jr, Zhang, D. & Ely, B. Regulation of podJ expression during the Caulobacter crescentus cell cycle. J. Bacteriol. 181, 3967–3973 (1999).
(
10.1128/JB.181.13.3967-3973.1999
) / J. Bacteriol. by WB Crymes Jr (1999) -
Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21, 932–939 (1999).
(
10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N
) / Bioessays by GL Blatch (1999) -
Hoch, J. A. & Silhavy, T. J. (eds) Two-Component Signal Transduction (ASM Press, Washington DC, 1995).
(
10.1128/9781555818319
) / Two-Component Signal Transduction by JA Hoch (1995) -
Loomis, W. F., Kuspa, A. & Shaulsky, G. Two-component signal transduction systems in eukaryotic microorganisms. Curr. Opin. Microbiol. 1, 643–648 (1998).
(
10.1016/S1369-5274(98)80109-4
) / Curr. Opin. Microbiol. by WF Loomis (1998) -
Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).
(
10.1073/pnas.1332764100
) / Proc. Natl Acad. Sci. USA by Z Li (2003)
Dates
Type | When |
---|---|
Created | 21 years, 5 months ago (March 19, 2004, 6:42 a.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:43 a.m.) |
Indexed | 2 weeks, 6 days ago (Aug. 7, 2025, 4:34 p.m.) |
Issued | 21 years, 4 months ago (April 1, 2004) |
Published | 21 years, 4 months ago (April 1, 2004) |
Published Print | 21 years, 4 months ago (April 1, 2004) |
@article{Skerker_2004, title={Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus}, volume={2}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro864}, DOI={10.1038/nrmicro864}, number={4}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Skerker, Jeffrey M. and Laub, Michael T.}, year={2004}, month=apr, pages={325–337} }