Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
References
113
Referenced
560
- Cavelli-Sforza, L., Lederberg, J. & Lederberg. E. An infective factor controlling sex compatibility in B. coli. J. Gen. Microbiol. 8, 89–103 (1953). / J. Gen. Microbiol. by L Cavelli-Sforza (1953)
-
Lawley, T. D., Klimke, W. A., Gubbins, M. J. & Frost, L. S. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224, 1–15 (2003).
(
10.1016/S0378-1097(03)00430-0
) / FEMS Microbiol. Lett. by TD Lawley (2003) -
Winans, S. C., Burns, D. L. & Christie, P. J. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 4, 64–68 (1996).
(
10.1016/0966-842X(96)81513-7
) / Trends Microbiol. by SC Winans (1996) -
Censini, S. et al. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).
(
10.1073/pnas.93.25.14648
) / Proc. Natl Acad. Sci. USA by S Censini (1996) -
Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998). Reports the discovery of a type IV secretion system that is evolutionarily related to the IncI plasmids and functions dually in conjugative transfer and effector translocation.
(
10.1126/science.279.5352.873
) / Science by JP Vogel (1998) -
Bacon, D. J. et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81–176. Infect. Immun. 68, 4384–4390 (2000).
(
10.1128/IAI.68.8.4384-4390.2000
) / Infect. Immun. by DJ Bacon (2000) -
Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001).
(
10.1046/j.1365-2958.2001.02502.x
) / Mol. Microbiol. by D Hofreuter (2001) -
Dillard, J. P. & Seifert, H. S. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 41, 263–277 (2001). References 6–8 report the discoveries of new type IV translocation systems, herein termed the 'DNA uptake and release' subfamily.
(
10.1046/j.1365-2958.2001.02520.x
) / Mol. Microbiol. by JP Dillard (2001) -
Bundock, P., den Dulk Ras, A., Beijersbergen, A. & Hooykaas, P. J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214 (1995).
(
10.1002/j.1460-2075.1995.tb07323.x
) / EMBO J. by P Bundock (1995) -
Bates, S., Cashmore, A. M. & Wilkins, B. M. IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae. J. Bacteriol. 180, 6538–6543 (1998).
(
10.1128/JB.180.24.6538-6543.1998
) / J. Bacteriol. by S Bates (1998) -
Zhu, J. et al. The bases of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895 (2000).
(
10.1128/JB.182.14.3885-3895.2000
) / J. Bacteriol. by J Zhu (2000) -
Waters, V. L. Conjugation between bacterial and mammalian cells. Nature Genet. 29, 375–376 (2001).
(
10.1038/ng779
) / Nature Genet. by VL Waters (2001) -
Grohmann, E., Muth, G. & Espinosa, M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 277–301 (2003).
(
10.1128/MMBR.67.2.277-301.2003
) / Microbiol. Mol. Biol. Rev. by E Grohmann (2003) -
de la Cruz, I. & Davies, J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 8, 128–133 (2000).
(
10.1016/S0966-842X(00)01703-0
) / Trends Microbiol. by I de la Cruz (2000) -
Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445 (2001).
(
10.1038/35086581
) / Nature by JM Ghigo (2001) -
Schlievert, P. M. et al. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect. Immun. 66, 218–223 (1998).
(
10.1128/IAI.66.1.218-223.1998
) / Infect. Immun. by PM Schlievert (1998) -
Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81–176. Infect. Immun. 70, 6242–6250 (2002).
(
10.1128/IAI.70.11.6242-6250.2002
) / Infect. Immun. by DJ Bacon (2002) -
Hofreuter, D., Odenbreit, S., Puls, J., Schwan, D. & Haas, R. Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res. Microbiol. 151, 487–491 (2000).
(
10.1016/S0923-2508(00)00164-9
) / Res. Microbiol. by D Hofreuter (2000) -
Hamilton, H. L., Schwartz, K. J. & Dillard, J. P. Insertion-duplication mutagenesis of Neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J. Bacteriol. 183, 4718–4726 (2001).
(
10.1128/JB.183.16.4718-4726.2001
) / J. Bacteriol. by HL Hamilton (2001) -
Chen, I. & Dubnau, D. DNA transport during transformation. Front. Biosci. 8, S544–S556 (2003).
(
10.2741/1047
) / Front. Biosci. by I Chen (2003) -
Blocker, A., Komoriya, K. & Aizawa, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl Acad. Sci. USA 100, 3027–3030 (2003).
(
10.1073/pnas.0535335100
) / Proc. Natl Acad. Sci. USA by A Blocker (2003) -
Christie, P. J. The Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol. 179, 3085–3094 (1997).
(
10.1128/jb.179.10.3085-3094.1997
) / J. Bacteriol. by PJ Christie (1997) -
Hilbi, H., Segal, G. & Shuman, H. A. Icm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol. Microbiol. 42, 603–617 (2001).
(
10.1046/j.1365-2958.2001.02645.x
) / Mol. Microbiol. by H Hilbi (2001) -
Schmiederer, M., Arcenas, R., Widen, R., Valkov, N. & Anderson, B. Intracellular induction of the Bartonella henselae virB operon by human endothelial cells. Infect. Immun. 69, 6495–6502 (2001).
(
10.1128/IAI.69.10.6495-6502.2001
) / Infect. Immun. by M Schmiederer (2001) -
Boschiroli, M. L. et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl Acad. Sci. USA 99, 1544–1549 (2002).
(
10.1073/pnas.032514299
) / Proc. Natl Acad. Sci. USA by ML Boschiroli (2002) -
Seubert, A., Hiestand, R., de la Cruz, F. & Dehio, C. A bacterial conjugation machinery recruited for pathogenesis. Mol. Microbiol. 49, 1253–1266 (2003).
(
10.1046/j.1365-2958.2003.03650.x
) / Mol. Microbiol. by A Seubert (2003) -
Rouot, B. et al. Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect. Immun. 71, 1075–1082 (2003).
(
10.1128/IAI.71.3.1075-1082.2003
) / Infect. Immun. by B Rouot (2003) -
Baron, C., O'Callaghan, D. & Lanka, E. Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol. Microbiol. 43, 1359–1365 (2002).
(
10.1046/j.1365-2958.2002.02816.x
) / Mol. Microbiol. by C Baron (2002) -
Llosa, M., Gomis-Ruth, F. X., Coll, M. & de la Cruz, F. Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45, 1–8 (2002).
(
10.1046/j.1365-2958.2002.03014.x
) / Mol. Microbiol. by M Llosa (2002) -
Gomis-Ruth, F. X. & Coll, M. Structure of TrwB, a gatekeeper in bacterial conjugation. Int. J. Biochem. Cell Biol. 33, 839–843 (2001).
(
10.1016/S1357-2725(01)00060-7
) / Int. J. Biochem. Cell Biol. by FX Gomis-Ruth (2001) -
Gomis-Ruth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001). Reports the first structure of a coupling protein, a hexameric F1-ATPase-like multimer that is highly indicative of a translocase function.
(
10.1038/35054586
) / Nature by FX Gomis-Ruth (2001) -
Hormaeche, I. et al. Purification and properties of TrwB, a hexameric, ATP-binding integral membrane protein essential for R388 plasmid conjugation. J. Biol. Chem. 277, 46456–46462 (2002).
(
10.1074/jbc.M207250200
) / J. Biol. Chem. by I Hormaeche (2002) -
Errington, J., Bath, J. & Wu, L. J. DNA transport in bacteria. Nature Rev. Mol. Cell Biol. 2, 538–545 (2001).
(
10.1038/35080005
) / Nature Rev. Mol. Cell Biol. by J Errington (2001) -
Schroder, G. et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J. Bacteriol. 184, 2767–2779 (2002).
(
10.1128/JB.184.10.2767-2779.2002
) / J. Bacteriol. by G Schroder (2002) -
Gilmour, M. W., Gunton, J. E., Lawley, T. D. & Taylor, D. E. Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol. Microbiol. 49, 105–116 (2003).
(
10.1046/j.1365-2958.2003.03551.x
) / Mol. Microbiol. by MW Gilmour (2003) -
Llosa, M., Zunzunegui, S. & de la Cruz, F. Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl Acad. Sci. USA 100, 10465–10470 ( 2003).
(
10.1073/pnas.1830264100
) / Proc. Natl Acad. Sci. USA by M Llosa (2003) -
Kumar, R. B. & Das, A. Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol. Microbiol. 43, 1523–1532 (2002).
(
10.1046/j.1365-2958.2002.02829.x
) / Mol. Microbiol. by RB Kumar (2002) -
Ding, Z. et al. A novel cytology-based, two-hybrid screen for bacteria applied to protein–protein interaction studies of a type IV secretion system. J. Bacteriol. 184, 5572–5582 (2002).
(
10.1128/JB.184.20.5572-5582.2002
) / J. Bacteriol. by Z Ding (2002) -
Atmakuri, K., Ding, Z. & Christie, P. J. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at the cell poles of Agrobacterium tumefaciens. Mol. Microbiol. 49, 1699–1713 (2003). Reports the first direct evidence for recruitment of a protein effector to a coupling protein, supporting a proposal that the coupling proteins function as general recruitment factors for type IV secretion substrates.
(
10.1046/j.1365-2958.2003.03669.x
) / Mol. Microbiol. by K Atmakuri (2003) -
Vergunst, A. C. et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000). This elegant study supplied the first incontrovertible evidence for protein trafficking by the A. tumefaciens VirB/D4 type IV secretion system.
(
10.1126/science.290.5493.979
) / Science by AC Vergunst (2000) -
Simone, M., McCullen, C. A., Stahl, L. E. & Binns, A. N. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol. Microbiol. 41, 1283–1293 (2001).
(
10.1046/j.1365-2958.2001.02582.x
) / Mol. Microbiol. by M Simone (2001) -
Schrammeijer, B., den Dulk-Ras A, Vergunst, A. C., Jurado Jacome, E. & Hooykaas, P. J. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucl. Acids Res. 31, 860–868 (2003).
(
10.1093/nar/gkg179
) / Nucl. Acids Res. by B Schrammeijer (2003) -
Selbach, M., Moese, S., Meyer, T. F. & Backert, S. Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect. Immun. 70, 665–667 (2002).
(
10.1128/IAI.70.2.665-671.2002
) / Infect. Immun. by M Selbach (2002) -
Conover, G. M., Derre, I., Vogel, J. P. & Isberg, R. R. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol. 48, 305–321 (2003). Describes the discovery of a novel effector, LidA, that is required for elaboration of the L. pneumophila Dot/Icm complex in the bacterium and, on translocation, functions in vesicle recruitment during biogenesis of the replication vacuole.
(
10.1046/j.1365-2958.2003.03400.x
) / Mol. Microbiol. by GM Conover (2003) -
Burns, D. L. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 6, 29–34 (2003).
(
10.1016/S1369-5274(02)00006-1
) / Curr. Opin. Microbiol. by DL Burns (2003) -
O'Callaghan, D. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33, 1210–1220 (1999).
(
10.1046/j.1365-2958.1999.01569.x
) / Mol. Microbiol. by D O'Callaghan (1999) -
Lai, E. M. & Kado, C. I. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol. 8, 361–369 (2000).
(
10.1016/S0966-842X(00)01802-3
) / Trends Microbiol. by EM Lai (2000) -
Eisenbrandt, R. et al. Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J. Biol. Chem. 274, 22548–22555 (1999). Provides evidence that the pilin subunits of the A. tumefaciens VirB/D4 and the plasmid RP4 Tra systems undergo head-to-tail cyclization during maturation, a completely new reaction in bacteria.
(
10.1074/jbc.274.32.22548
) / J. Biol. Chem. by R Eisenbrandt (1999) -
Schmidt-Eisenlohr, H. et al. Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J. Bacteriol. 181, 7485–7492 (1999).
(
10.1128/JB.181.24.7485-7492.1999
) / J. Bacteriol. by H Schmidt-Eisenlohr (1999) -
Sagulenko, V., Sagulenko, E., Jakubowski, S., Spudich, E. & Christie, P. J. VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J. Bacteriol. 183, 3642–3651 (2001).
(
10.1128/JB.183.12.3642-3651.2001
) / J. Bacteriol. by V Sagulenko (2001) -
Baron, C., Llosa, M., Zhou, S. & Zambryski, P. C. VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J. Bacteriol. 179, 1203–1210 (1997).
(
10.1128/jb.179.4.1203-1210.1997
) / J. Bacteriol. by C Baron (1997) -
Berger, B. R. & Christie, P. J. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J. Bacteriol. 176, 3646–3660 (1994).
(
10.1128/jb.176.12.3646-3660.1994
) / J. Bacteriol. by BR Berger (1994) -
Kumar, R. B., Xie, Y. H. & Das, A. Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol. Microbiol. 36, 608–617 (2000).
(
10.1046/j.1365-2958.2000.01876.x
) / Mol. Microbiol. by RB Kumar (2000) -
Das, A., Anderson, L. B. & Xie, Y. H. Delineation of the interaction domains of Agrobacterium tumefaciens VirB7 and VirB9 by use of the yeast two-hybrid assay. J. Bacteriol. 179, 3404–3409 (1997).
(
10.1128/jb.179.11.3404-3409.1997
) / J. Bacteriol. by A Das (1997) -
Beauprè, C. E., Bohne, J., Dale, E. M. & Binns, A. N. Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J. Bacteriol. 179, 78–89 (1997).
(
10.1128/jb.179.1.78-89.1997
) / J. Bacteriol. by CE Beauprè (1997) -
Das, A. & Xie, Y. -H. The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J. Bacteriol. 182, 758–763 (2000).
(
10.1128/JB.182.3.758-763.2000
) / J. Bacteriol. by A Das (2000) -
Ward, D. V., Draper, O., Zupan, J. R. & Zambryski, P. C. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc. Natl Acad. Sci. USA 99, 11493–11500 (2002). Reports a comprehensive linkage map of the VirB proteins by yeast dihybrid screens.
(
10.1073/pnas.172390299
) / Proc. Natl Acad. Sci. USA by DV Ward (2002) -
Krall, L. et al. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 99, 11405–11410 (2002).
(
10.1073/pnas.172390699
) / Proc. Natl Acad. Sci. USA by L Krall (2002) -
Jakubowski, S. J., Krishnamoorthy, V. & Christie, P. J. Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J. Bacteriol. 185, 2867–2878 (2003).
(
10.1128/JB.185.9.2867-2878.2003
) / J. Bacteriol. by SJ Jakubowski (2003) -
Rambow-Larsen, A. A. & Weiss, A. A. The PtlE protein of Bordetella pertussis has peptidoglycanase activity required for Ptl-mediated pertussis toxin secretion. J. Bacteriol. 184, 2863–2869 (2002).
(
10.1128/JB.184.11.2863-2869.2002
) / J. Bacteriol. by AA Rambow-Larsen (2002) -
Farizo, K. M., Cafarella, T. G. & Burns, D. L. Evidence for a ninth gene, ptlI, in the locus encoding the pertussis toxin secretion system of Bordetella pertussis and formation of a PtlI–PtlF complex. J. Biol. Chem. 271, 31643–31649 (1996).
(
10.1074/jbc.271.49.31643
) / J. Biol. Chem. by KM Farizo (1996) -
Harris, R. L., Hombs, V. & Silverman, P. M. Evidence that F-plasmid proteins TraV, TraK and TraB assemble into an envelope-spanning structure in Escherichia coli. Mol. Microbiol. 42, 757–766 (2001).
(
10.1046/j.1365-2958.2001.02667.x
) / Mol. Microbiol. by RL Harris (2001) -
Liu, Z. & Binns, A. N. Functional subsets of the VirB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J. Bacteriol. 185, 3259–3269 (2003).
(
10.1128/JB.185.11.3259-3269.2003
) / J. Bacteriol. by Z Liu (2003) -
Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).
(
10.1073/pnas.051436598
) / Proc. Natl Acad. Sci. USA by PJ Planet (2001) -
Yeo, H. -J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV system. Mol. Cell 6, 1461–1472 (2000). Reports the first structure of a member of the VirB11 superfamily of traffic ATPases.
(
10.1016/S1097-2765(00)00142-8
) / Mol. Cell by H-J Yeo (2000) -
Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).
(
10.1093/emboj/cdg223
) / EMBO J. by SN Savvides (2003) -
Rabel, C., Grahn, A. M., Lurz, R. & Lanka, E. The VirB4 family of proposed traffic nucleoside triphosphatases: Common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J. Bacteriol. 185, 1045–1058 (2003).
(
10.1128/JB.185.3.1045-1058.2003
) / J. Bacteriol. by C Rabel (2003) -
Dang, T. A., Zhou, X. -R., Graf, B. & Christie, P. J. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on assembly and function of the T-DNA transporter. Mol. Microbiol. 32, 1239–1251 (1999).
(
10.1046/j.1365-2958.1999.01436.x
) / Mol. Microbiol. by TA Dang (1999) -
Sagulenko, Y., Sagulenko, V., Chen, J. & Christie, P. J. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J. Bacteriol. 183, 5813–5825 (2001).
(
10.1128/JB.183.20.5813-5825.2001
) / J. Bacteriol. by Y Sagulenko (2001) -
Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol. Microbiol. 49, 219–234 (2003).
(
10.1046/j.1365-2958.2003.03549.x
) / Mol. Microbiol. by M Rohde (2003) -
Tanaka, J., Suzuki, T., Mimuro, H. & Sasakawa, C. Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell. Microbiol. 5, 395–404 (2003). References 70 and 71 report that the Cag type IV secretion system elaborates new sheathed surface structures that contribute to H. pylori pathogenesis.
(
10.1046/j.1462-5822.2003.00286.x
) / Cell. Microbiol. by J Tanaka (2003) -
Schulein, R. & Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol. 46, 1053–1067 (2002).
(
10.1046/j.1365-2958.2002.03208.x
) / Mol. Microbiol. by R Schulein (2002) -
Watarai, M., Andrews, H. L. & Isberg, R. Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol. Microbiol. 39, 313–329 (2001).
(
10.1046/j.1365-2958.2001.02193.x
) / Mol. Microbiol. by M Watarai (2001) -
Farizo, K. M., Fiddner, S., Cheung, A. M. & Burns, D. L. Membrane localization of the S1 subunit of pertussis toxin in Bordetella pertussis and implications for pertussis toxin secretion. Infect. Immun. 70, 1193–1201 (2002).
(
10.1128/IAI.70.3.1193-1201.2002
) / Infect. Immun. by KM Farizo (2002) -
Grahn, A. M., Haase, J., Bamford, D. H. & Lanka, E. Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J. Bacteriol. 182, 1564–1574 (2000).
(
10.1128/JB.182.6.1564-1574.2000
) / J. Bacteriol. by AM Grahn (2000) -
Pantoja, M., Chen, L., Chen, Y. & Nester, E. W. Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol. Microbiol. 45, 1325–1335 (2002).
(
10.1046/j.1365-2958.2002.03098.x
) / Mol. Microbiol. by M Pantoja (2002) -
Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).
(
10.1126/science.284.5418.1322
) / Science by JE Galan (1999) -
Ward, D. V. & Zambryski, P. C. The six functions of Agrobacterium VirE2. Proc. Natl Acad. Sci. USA 98, 385–386 (2001).
(
10.1073/pnas.98.2.385
) / Proc. Natl Acad. Sci. USA by DV Ward (2001) -
Deng, W. et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc. Natl Acad. Sci. USA 95, 7040–7045 (1998).
(
10.1073/pnas.95.12.7040
) / Proc. Natl Acad. Sci. USA by W Deng (1998) -
Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the 'gene-jockeying' tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).
(
10.1128/MMBR.67.1.16-37.2003
) / Microbiol. Mol. Biol. Rev. by SB Gelvin (2003) -
Tzfira, T. & Citovsky, V. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12, 121–129 (2002).
(
10.1016/S0962-8924(01)02229-2
) / Trends Cell Biol. by T Tzfira (2002) -
Zhu, Y. et al. Identification of Arabidopsis rat mutants. Plant Physiol. 132, 494–505 (2003).
(
10.1104/pp.103.020420
) / Plant Physiol. by Y Zhu (2003) -
Roberts, R. L. et al. Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc. Natl Acad. Sci. USA 100, 6634–6639 (2003).
(
10.1073/pnas.1132022100
) / Proc. Natl Acad. Sci. USA by RL Roberts (2003) -
Segal, E., Cha, J., Lo, J., Falkow, S. & Tompkins, L. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA 96, 14559–14564 (1999).
(
10.1073/pnas.96.25.14559
) / Proc. Natl Acad. Sci. USA by E Segal (1999) -
Hatakeyama, M. Helicobacter pylori CagA — a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect. 5, 143–150 (2003).
(
10.1016/S1286-4579(02)00085-0
) / Microbes Infect. by M Hatakeyama (2003) -
Asahi, M. et al. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191, 593–602 (2000).
(
10.1084/jem.191.4.593
) / J. Exp. Med. by M Asahi (2000) -
Stein, M., Rappuoli, R. & Covacci, A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl Acad. Sci. USA 97, 1263–1268 (2000).
(
10.1073/pnas.97.3.1263
) / Proc. Natl Acad. Sci. USA by M Stein (2000) -
Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).
(
10.1126/science.287.5457.1497
) / Science by S Odenbreit (2000) -
Stein, M. et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43, 971–980 (2002).
(
10.1046/j.1365-2958.2002.02781.x
) / Mol. Microbiol. by M Stein (2002) -
Backert, S. et al. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell. Microbiol. 2, 155–164 (2000). References 84, 86, 87, 88 and 90 report the first evidence for CagA translocation and subsequent phosphorylation in human cells.
(
10.1046/j.1462-5822.2000.00043.x
) / Cell. Microbiol. by S Backert (2000) -
Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277, 6775–6778 (2002).
(
10.1074/jbc.C100754200
) / J. Biol. Chem. by M Selbach (2002) -
Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).
(
10.1126/science.1067147
) / Science by H Higashi (2002) -
Churin, Y. et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell Biol. 161, 249–255 (2003).
(
10.1083/jcb.200208039
) / J. Cell Biol. by Y Churin (2003) -
Mimuro, H. et al. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol. Cell 10, 745–755 (2002).
(
10.1016/S1097-2765(02)00681-0
) / Mol. Cell by H Mimuro (2002) -
Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003). Shows that non-phosphorylated CagA induces formation of an aberrant apical-junction protein complex, resulting in loss of cell polarity, proliferation and differentiation.
(
10.1126/science.1081919
) / Science by MR Amieva (2003) -
Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348 (2001).
(
10.1046/j.1365-2958.2001.02714.x
) / Mol. Microbiol. by W Fischer (2001) -
Stein, P. E. et al. The crystal structure of pertussis toxin. Structure 2, 45–57 (1994).
(
10.1016/S0969-2126(00)00007-1
) / Structure by PE Stein (1994) -
Albert, P. R. & Robillard, L. G-protein specificity: traffic direction required. Cell Signal. 14, 407–418 (2002).
(
10.1016/S0898-6568(01)00259-5
) / Cell Signal. by PR Albert (2002) -
Vogel, J. P. & Isberg, R. R. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2, 30–34 (1999).
(
10.1016/S1369-5274(99)80005-8
) / Curr. Opin. Microbiol. by JP Vogel (1999) -
Swanson, M. S. & Sturgill-Koszycki, S. Exploitation of macrophages as a replication niche by Legionella pneumophila. Trends Microbiol. 8, 47–49 (2000).
(
10.1016/S0966-842X(99)01674-1
) / Trends Microbiol. by MS Swanson (2000) -
Segal, G., Purcell, M. & Schuman, H. A. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl Acad. Sci. USA 95, 1669–1674 (1998).
(
10.1073/pnas.95.4.1669
) / Proc. Natl Acad. Sci. USA by G Segal (1998) -
Segal, G. & Shuman, H. A. Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol. Microbiol. 30, 197–208 (1998).
(
10.1046/j.1365-2958.1998.01054.x
) / Mol. Microbiol. by G Segal (1998) -
Nagai, H. & Roy, C. R. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970 (2001).
(
10.1093/emboj/20.21.5962
) / EMBO J. by H Nagai (2001) -
Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).
(
10.1126/science.1067025
) / Science by H Nagai (2002) -
Boschiroli, M. L. et al. Type IV secretion and Brucella virulence. Vet. Microbiol. 90, 341–348 (2002).
(
10.1016/S0378-1135(02)00219-5
) / Vet. Microbiol. by ML Boschiroli (2002) -
Novak, K. F., Dougherty, B. & Pelaez, M. Actinobacillus actinomycetemcomitans harbours type IV secretion system genes on a plasmid and in the chromosome. Microbiology 147, 3027–3035 (2001).
(
10.1099/00221287-147-11-3027
) / Microbiology by KF Novak (2001) -
Ohashi, N., Zhi, N., Lin, Q. & Rikihisa, Y. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun. 70, 2128–2138 (2002).
(
10.1128/IAI.70.4.2128-2138.2002
) / Infect. Immun. by N Ohashi (2002) -
Masui, S., Sasaki, T. & Ishikawa, H. Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J. Bacteriol. 182, 6529–6531 (2000).
(
10.1128/JB.182.22.6529-6531.2000
) / J. Bacteriol. by S Masui (2000) -
Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).
(
10.1038/24094
) / Nature by SG Andersson (1998) -
Bhattacharyya, A. et al. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc. Natl Acad. Sci. USA 99, 12403–12408 (2002).
(
10.1073/pnas.132393999
) / Proc. Natl Acad. Sci. USA by A Bhattacharyya (2002) -
Zusman, T., Yerushalmi, G. & Segal, G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun. 71, 3714–3723 (2003).
(
10.1128/IAI.71.7.3714-3723.2003
) / Infect. Immun. by T Zusman (2003) -
Burghdorf, R., Forster, C., Haas, R. & Fischer, W. Topological analysis of a putative VirB8 homologue essential for the cag type IV secretion system in Helicobacter pylori. Int. J. Med. Microbiol. 293, 213–217 (2003).
(
10.1078/1438-4221-00260
) / Int. J. Med. Microbiol. by R Burghdorf (2003) -
Cao, T. B. & Saier, M. H. Jr. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints, and evolutionary conclusions. Microbiology 147, 3201–3214 (2001).
(
10.1099/00221287-147-12-3201
) / Microbiology by TB Cao (2001)
Dates
Type | When |
---|---|
Created | 21 years, 10 months ago (Oct. 23, 2003, 10:25 p.m.) |
Deposited | 3 years, 4 months ago (April 19, 2022, 1:26 p.m.) |
Indexed | 2 days, 20 hours ago (Aug. 29, 2025, 5:48 a.m.) |
Issued | 21 years, 10 months ago (Nov. 1, 2003) |
Published | 21 years, 10 months ago (Nov. 1, 2003) |
Published Print | 21 years, 10 months ago (Nov. 1, 2003) |
@article{Cascales_2003, title={The versatile bacterial type IV secretion systems}, volume={1}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro753}, DOI={10.1038/nrmicro753}, number={2}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Cascales, Eric and Christie, Peter J.}, year={2003}, month=nov, pages={137–149} }