Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
References
172
Referenced
917
-
Gerlach, R. G. & Hensel, M. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol. 297, 401–415 (2007).
(
10.1016/j.ijmm.2007.03.017
) / Int. J. Med. Microbiol. by RG Gerlach (2007) -
Lycklama a Nijehot, J. A. & Driessen, A. J. M. The bacterial Sec-translocase: structure and mechanism. Phil. Trans. R. Soc. B 367, 1016–1028 (2012).
(
10.1098/rstb.2011.0201
) / Phil. Trans. R. Soc. B by JA Lycklama a Nijehot (2012) -
Palmer, T. & Berks, B. C. The twin-arginine translocation (Tat) protein export pathway. Nature Rev. Microbiol. 10, 483–496 (2012).
(
10.1038/nrmicro2814
) / Nature Rev. Microbiol. by T Palmer (2012) -
Rego, A. T., Chandran, V. & Waksman, G. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone–usher pathway of pilus biogenesis. Biochem. J. 425, 475–488 (2010).
(
10.1042/BJ20091518
) / Biochem. J. by AT Rego (2010) -
Kanonenberg, K., Schwarz, C. K. W. & Schmitt, L. Type I secretion systems — a story of appendices. Res. Microbiol. 164, 596–604 (2013).
(
10.1016/j.resmic.2013.03.011
) / Res. Microbiol. by K Kanonenberg (2013) -
Piddock, L. J. V. Multidrug-resistance efflux pumps — not just for resistance. Nature Rev. Microbiol. 4, 629–636 (2006).
(
10.1038/nrmicro1464
) / Nature Rev. Microbiol. by LJV Piddock (2006) -
Kadaba, N. S., Kaiser, J. T., Johnson, E., Lee, A. & Rees, D. C. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321, 250–253 (2008).
(
10.1126/science.1157987
) / Science by NS Kadaba (2008) -
Shintre, C. A. et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc. Natl Acad. Sci. USA 110, 9710–9715 (2013). This article describes the molecular mechanism of ABC transporters.
(
10.1073/pnas.1217042110
) / Proc. Natl Acad. Sci. USA by CA Shintre (2013) -
Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006).
(
10.1038/nature05076
) / Nature by S Murakami (2006) -
Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).
(
10.1038/nature01050
) / Nature by S Murakami (2002) -
Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H. & Koshland, D. E. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003).
(
10.1126/science.1083137
) / Science by EW Yu (2003) -
Seeger, M. A. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006).
(
10.1126/science.1131542
) / Science by MA Seeger (2006) -
Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O. & Grütter, M. G. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7 (2007). This paper describes the molecular mechanism of transport of the RND inner membrane component.
(
10.1371/journal.pbio.0050007
) / PLoS Biol. by G Sennhauser (2007) -
Eicher, T. et al. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. eLife 3, e03145 (2014).
(
10.7554/eLife.03145
) / eLife by T Eicher (2014) -
Balakrishnan, L., Hughes, C. & Koronakis, V. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. J. Mol. Biol. 313, 501–510 (2001).
(
10.1006/jmbi.2001.5038
) / J. Mol. Biol. by L Balakrishnan (2001) -
Delepelaire, P. Type I secretion in Gram-negative bacteria. Biochim. Biophys. Acta 1694, 149–161 (2004).
(
10.1016/j.bbamcr.2004.05.001
) / Biochim. Biophys. Acta by P Delepelaire (2004) -
Yum, S. et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J. Mol. Biol. 387, 1286–1297 (2009).
(
10.1016/j.jmb.2009.02.048
) / J. Mol. Biol. by S Yum (2009) -
Koronakis, V., Eswaran, J. & Hughes, C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu. Rev. Biochem. 73, 467–489 (2004).
(
10.1146/annurev.biochem.73.011303.074104
) / Annu. Rev. Biochem. by V Koronakis (2004) -
Bavro, V. N. et al. Assembly and channel opening in a bacterial drug efflux machine. Mol. Cell 30, 114–121 (2008). This article describes the opening mechanism of TolC.
(
10.1016/j.molcel.2008.02.015
) / Mol. Cell by VN Bavro (2008) -
Pei, X. Y. et al. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc. Natl Acad. Sci. USA 108, 2112–2117 (2011).
(
10.1073/pnas.1012588108
) / Proc. Natl Acad. Sci. USA by XY Pei (2011) -
Du, D. et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature 509, 512–515 (2014). This article describes the EM structure of a complete RND pump.
(
10.1038/nature13205
) / Nature by D Du (2014) -
Nivaskumar, M. & Francetic, O. Type II secretion system: a magic beanstalk or a protein escalator. Biochim. Biophys. Acta 1843, 1568–1577 (2014).
(
10.1016/j.bbamcr.2013.12.020
) / Biochim. Biophys. Acta by M Nivaskumar (2014) -
Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nature Rev. Microbiol. 10, 336–351 (2012).
(
10.1038/nrmicro2762
) / Nature Rev. Microbiol. by KV Korotkov (2012) -
Reichow, S. L., Korotkov, K. V., Hol, W. G. & Gonen, T. Structure of the cholera toxin secretion channel in its closed state. Nature Struct. Mol. Biol. 17, 1226–1232 (2010). This study describes the EM map of a T2SS secretin.
(
10.1038/nsmb.1910
) / Nature Struct. Mol. Biol. by SL Reichow (2010) -
Korotkov, K. V., Pardon, E., Steyaert, J. & Hol, W. G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009).
(
10.1016/j.str.2008.11.011
) / Structure by KV Korotkov (2009) -
Korotkov, K. V., Delarosa, J. R. & Hol, W. G. A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. J. Struct. Biol. 183, 354–362 (2013).
(
10.1016/j.jsb.2013.06.013
) / J. Struct. Biol. by KV Korotkov (2013) -
Gu, S., Rehman, S., Wang, X., Shevchik, V. E. & Pickersgill, R. W. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. PLoS Pathog. 8, e1002531 (2012).
(
10.1371/journal.ppat.1002531
) / PLoS Pathog. by S Gu (2012) -
Abendroth, J. et al. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J. Struct. Biol. 166, 303–315 (2009).
(
10.1016/j.jsb.2009.03.009
) / J. Struct. Biol. by J Abendroth (2009) -
Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W. G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344, 619–633 (2004).
(
10.1016/j.jmb.2004.09.062
) / J. Mol. Biol. by J Abendroth (2004) -
Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W. G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845–855 (2005).
(
10.1016/j.jmb.2005.02.061
) / J. Mol. Biol. by J Abendroth (2005) -
Abendroth, J., Kreger, A. C. & Hol, W. G. The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus. J. Struct. Biol. 168, 313–322 (2009).
(
10.1016/j.jsb.2009.07.022
) / J. Struct. Biol. by J Abendroth (2009) -
Korotkov, K. V. et al. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog. 7, e1002228 (2011).
(
10.1371/journal.ppat.1002228
) / PLoS Pathog. by KV Korotkov (2011) -
McLaughlin, L. S., Haft, R. J. & Forest, K. T. Structural insights into the type II secretion nanomachine. Curr. Opin. Struct. Biol. 22, 208–216 (2012).
(
10.1016/j.sbi.2012.02.005
) / Curr. Opin. Struct. Biol. by LS McLaughlin (2012) -
Lu, C. et al. Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure 21, 1707–1717 (2013).
(
10.1016/j.str.2013.06.027
) / Structure by C Lu (2013) -
Gray, M. D., Bagdasarian, M., Hol, W. G. & Sandkvist, M. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol. Microbiol. 79, 786–798 (2011).
(
10.1111/j.1365-2958.2010.07487.x
) / Mol. Microbiol. by MD Gray (2011) -
Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).
(
10.1093/embo-reports/kve042
) / EMBO Rep. by B Py (2001) -
Campos, M., Nilges, M., Cisneros, D. A. & Francetic, O. Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc. Natl Acad. Sci. USA 107, 13081–13086 (2010).
(
10.1073/pnas.1001703107
) / Proc. Natl Acad. Sci. USA by M Campos (2010) -
Cisneros, D. A., Pehau-Arnaudet, G. & Francetic, O. Heterologous assembly of type IV pili by a type II secretion system reveals the role of minor pilins in assembly initiation. Mol. Microbiol. 86, 805–818 (2012).
(
10.1111/mmi.12033
) / Mol. Microbiol. by DA Cisneros (2012) -
Nivaskumar, M. et al. Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22, 685–696 (2014).
(
10.1016/j.str.2014.03.001
) / Structure by M Nivaskumar (2014) -
Berry, J. L. et al. Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog. 8, e1002923 (2012).
(
10.1371/journal.ppat.1002923
) / PLoS Pathog. by JL Berry (2012) -
Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).
(
10.1038/nature05272
) / Nature by JE Galan (2006) -
Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006).
(
10.1038/nrmicro1526
) / Nature Rev. Microbiol. by GR Cornelis (2006) -
Büttner, D. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76, 262–310 (2012).
(
10.1128/MMBR.05017-11
) / Microbiol. Mol. Biol. Rev. by D Büttner (2012) -
Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998). This study reveals and characterizes the first T3SS isolated from S . Typhimurium by EM.
(
10.1126/science.280.5363.602
) / Science by T Kubori (1998) -
Schraidt, O. & Marlovits, T. C. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331, 1192–1195 (2011).
(
10.1126/science.1199358
) / Science by O Schraidt (2011) -
Marlovits, T. C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006).
(
10.1038/nature04822
) / Nature by TC Marlovits (2006) -
Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004). This paper provides the first structural insights into a T3SS needle complex.
(
10.1126/science.1102610
) / Science by TC Marlovits (2004) -
Kawamoto, A. et al. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3, 3369 (2013).
(
10.1038/srep03369
) / Sci. Rep. by A Kawamoto (2013) -
Eichelberg, K., Ginocchio, C. C. & Galan, J. E. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176, 4501–4510 (1994).
(
10.1128/jb.176.15.4501-4510.1994
) / J. Bacteriol. by K Eichelberg (1994) -
Akeda, Y. & Galán, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).
(
10.1038/nature03992
) / Nature by Y Akeda (2005) -
Lara-Tejero, M., Kato, J., Wagner, S., Liu, X. & Galán, J. E. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331, 1188–1191 (2011).
(
10.1126/science.1201476
) / Science by M Lara-Tejero (2011) -
Schraidt, O. et al. Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog. 6, e1000824 (2010).
(
10.1371/journal.ppat.1000824
) / PLoS Pathog. by O Schraidt (2010) -
Spreter, T. et al. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nature Struct. Mol. Biol. 16, 468–476 (2009).
(
10.1038/nsmb.1603
) / Nature Struct. Mol. Biol. by T Spreter (2009) -
Yip, C. K. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435, 702–707 (2005).
(
10.1038/nature03554
) / Nature by CK Yip (2005) -
Worrall, L. J., Lameignere, E. & Strynadka, N. C. Structural overview of the bacterial injectisome. Curr. Opin. Microbiol. 14, 3–8 (2011).
(
10.1016/j.mib.2010.10.009
) / Curr. Opin. Microbiol. by LJ Worrall (2011) -
Abrusci, P. et al. Architecture of the major component of the type III secretion system export apparatus. Nature Struct. Mol. Biol. 20, 99–104 (2013).
(
10.1038/nsmb.2452
) / Nature Struct. Mol. Biol. by P Abrusci (2013) -
Kubori, T., Sukhan, A., Aizawa, S. I. & Galán, J. E. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl Acad. Sci. USA 97, 10225–10230 (2000).
(
10.1073/pnas.170128997
) / Proc. Natl Acad. Sci. USA by T Kubori (2000) -
Kimbrough, T. G. & Miller, S. I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA 97, 11008–11013 (2000).
(
10.1073/pnas.200209497
) / Proc. Natl Acad. Sci. USA by TG Kimbrough (2000) -
Poyraz, O. et al. Protein refolding is required for assembly of the type three secretion needle. Nature Struct. Mol. Biol. 17, 788–792 (2010).
(
10.1038/nsmb.1822
) / Nature Struct. Mol. Biol. by O Poyraz (2010) -
Loquet, A. et al. Atomic model of the type III secretion system needle. Nature 486, 276–279 (2012).
(
10.1038/nature11079
) / Nature by A Loquet (2012) -
Radics, J., Konigsmaier, L. & Marlovits, T. C. Structure of a pathogenic type 3 secretion system in action. Nature Struct. Mol. Biol. 21, 82–87 (2014). This study describes the first three-dimensional snapshot of a T3SS needle complex in the process of substrate secretion.
(
10.1038/nsmb.2722
) / Nature Struct. Mol. Biol. by J Radics (2014) -
Blocker, A. J. et al. What's the point of the type III secretion system needle? Proc. Natl Acad. Sci. USA 105, 6507–6513 (2008).
(
10.1073/pnas.0708344105
) / Proc. Natl Acad. Sci. USA by AJ Blocker (2008) -
Izore, T., Job, V. & Dessen, A. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19, 603–612 (2011).
(
10.1016/j.str.2011.03.015
) / Structure by T Izore (2011) -
Galan, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).
(
10.1146/annurev-micro-092412-155725
) / Annu. Rev. Microbiol. by JE Galan (2014) -
Parsot, C., Hamiaux, C. & Page, A. L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).
(
10.1016/S1369-5274(02)00002-4
) / Curr. Opin. Microbiol. by C Parsot (2003) -
Hu, B. et al. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl Acad. Sci. USA 112, 1047–1052 (2015).
(
10.1073/pnas.1411610112
) / Proc. Natl Acad. Sci. USA by B Hu (2015) -
Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).
(
10.1128/MMBR.00023-09
) / Microbiol. Mol. Biol. Rev. by CE Alvarez-Martinez (2009) -
Christie, P. J., Whitaker, N. & González-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).
(
10.1016/j.bbamcr.2013.12.019
) / Biochim. Biophys. Acta by PJ Christie (2014) -
Trokter, M., Felisberto-Rodrigues, C., Christie, P. J. & Waksman, G. Recent advances in the structural and molecular biology of type IV secretion systems. Curr. Opin. Struct. Biol. 27, 16–23 (2014).
(
10.1016/j.sbi.2014.02.006
) / Curr. Opin. Struct. Biol. by M Trokter (2014) -
Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550–553 (2014). This is the first study to describe the overall architecture of a T4SS.
(
10.1038/nature13081
) / Nature by HH Low (2014) -
Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, 266–268 (2009). This paper describes the assembly, purification and EM structure of the core–OM complex of a T4SS.
(
10.1126/science.1166101
) / Science by R Fronzes (2009) -
Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J. 32, 1195–1204 (2013).
(
10.1038/emboj.2013.58
) / EMBO J. by A Rivera-Calzada (2013) -
Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009).
(
10.1038/nature08588
) / Nature by V Chandran (2009) -
Cascales, E. & Christie, P. J. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233 (2004).
(
10.1073/pnas.0405843101
) / Proc. Natl Acad. Sci. USA by E Cascales (2004) -
Terradot, L. et al. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 4596–4601 (2005).
(
10.1073/pnas.0408927102
) / Proc. Natl Acad. Sci. USA by L Terradot (2005) -
Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).
(
10.1093/emboj/cdg223
) / EMBO J. by SN Savvides (2003) -
Pena, A. et al. The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J. Biol. Chem. 287, 39925–39932 (2012).
(
10.1074/jbc.M112.413849
) / J. Biol. Chem. by A Pena (2012) -
Yeo, H. J., Yuan, Q., Beck, M. R., Baron, C. & Waksman, G. Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc. Natl Acad. Sci. USA 100, 15947–15952 (2003).
(
10.1073/pnas.2535211100
) / Proc. Natl Acad. Sci. USA by HJ Yeo (2003) -
Gomis-Rüth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).
(
10.1038/35054586
) / Nature by FX Gomis-Rüth (2001) -
Wallden, K. et al. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc. Natl Acad. Sci. USA 109, 11348–11353 (2012).
(
10.1073/pnas.1201428109
) / Proc. Natl Acad. Sci. USA by K Wallden (2012) -
Bradley, D. E. Morphological and serological relationships of conjugative pili. Plasmid 4, 155–169 (1980).
(
10.1016/0147-619X(80)90005-0
) / Plasmid by DE Bradley (1980) -
Durrenberger, M. B., Villiger, W. & Bachi, T. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J. Struct. Biol. 107, 146–156 (1991).
(
10.1016/1047-8477(91)90018-R
) / J. Struct. Biol. by MB Durrenberger (1991) -
Aly, K. A. & Baron, C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766–3775 (2007).
(
10.1099/mic.0.2007/010462-0
) / Microbiology by KA Aly (2007) -
Cascales, E. & Christie, P. J. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170–1173 (2004). This study defines the translocation pathway for a DNA substrate through the bacterial T4SS.
(
10.1126/science.1095211
) / Science by E Cascales (2004) -
Ripoll-Rozada, J., Zunzunegui, S., de la Cruz, F., Arechaga, I. & Cabezon, E. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J. Bacteriol. 195, 4195–4201 (2013).
(
10.1128/JB.00437-13
) / J. Bacteriol. by J Ripoll-Rozada (2013) -
Zoued, A. et al. Architecture and assembly of the Type VI secretion system. Biochim. Biophys. Acta 1843, 1664–1673 (2014).
(
10.1016/j.bbamcr.2014.03.018
) / Biochim. Biophys. Acta by A Zoued (2014) -
Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).
(
10.1016/j.chom.2013.11.008
) / Cell Host Microbe by BT Ho (2014) -
Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).
(
10.1073/pnas.0510322103
) / Proc. Natl Acad. Sci. USA by S Pukatzki (2006) -
Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10, 104 (2009).
(
10.1186/1471-2164-10-104
) / BMC Genomics by F Boyer (2009) -
Zheng, J. & Leung, K. Y. Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol. 66, 1192–1206 (2007).
(
10.1111/j.1365-2958.2007.05993.x
) / Mol. Microbiol. by J Zheng (2007) -
Ma, L. S., Lin, J. S. & Lai, E. M. An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J. Bacteriol. 191, 4316–4329 (2009).
(
10.1128/JB.00029-09
) / J. Bacteriol. by LS Ma (2009) -
Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).
(
10.1073/pnas.0813360106
) / Proc. Natl Acad. Sci. USA by PG Leiman (2009) -
Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012). This study uses a combination of fluorescence microscopy and electron microscopy to visualize the T6SS in action.
(
10.1038/nature10846
) / Nature by M Basler (2012) -
Felisberto-Rodrigues, C. et al. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ–TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7, e1002386 (2011).
(
10.1371/journal.ppat.1002386
) / PLoS Pathog. by C Felisberto-Rodrigues (2011) -
Zoued, A. et al. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031–27041 (2013).
(
10.1074/jbc.M113.499772
) / J. Biol. Chem. by A Zoued (2013) -
Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).
(
10.1038/nature12453
) / Nature by MM Shneider (2013) -
Brunet, Y. R., Hénin, J., Celia, H. & Cascales, E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15, 315–321 (2014).
(
10.1002/embr.201337936
) / EMBO Rep. by YR Brunet (2014) -
Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).
(
10.1126/science.1128393
) / Science by JD Mougous (2006) -
Kube, S. et al. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep. 8, 20–30 (2014).
(
10.1016/j.celrep.2014.05.034
) / Cell Rep. by S Kube (2014) -
Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H. & Mogk, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28, 315–325 (2009).
(
10.1038/emboj.2008.269
) / EMBO J. by G Bönemann (2009) -
Kudryashev, M. et al. Structure of the type VI secretion system contractile sheath. Cell 160, 952–962 (2015).
(
10.1016/j.cell.2015.01.037
) / Cell by M Kudryashev (2015) -
Silverman, J. M. et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell 51, 584–593 (2013).
(
10.1016/j.molcel.2013.07.025
) / Mol. Cell by JM Silverman (2013) -
Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics within and between bacterial cells. Science 337, 815 (2012).
(
10.1126/science.1222901
) / Science by M Basler (2012) -
Clemens, D. L., Ge, P., Lee, B. Y., Horwitz, M. A. & Zhou, Z. H. Atomic structure of T6SS reveals interlaced array essential to function. Cell 160, 940–951 (2015).
(
10.1016/j.cell.2015.02.005
) / Cell by DL Clemens (2015) -
Leo, J. C., Grin, I. & Linke, D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Phil. Trans. R. Soc. B 367, 1088–1101 (2012).
(
10.1098/rstb.2011.0208
) / Phil. Trans. R. Soc. B by JC Leo (2012) -
Leyton, D. L., Rossiter, A. E. & Henderson, I. R. From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nature Rev. Microbiol. 10, 213–225 (2012).
(
10.1038/nrmicro2733
) / Nature Rev. Microbiol. by DL Leyton (2012) -
Junker, M., Besingi, R. N. & Clark, P. L. Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol. Microbiol. 71, 1323–1332 (2009).
(
10.1111/j.1365-2958.2009.06607.x
) / Mol. Microbiol. by M Junker (2009) -
Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. eLife 3, e04234 (2014).
(
10.7554/eLife.04234
) / eLife by G Roman-Hernandez (2014) -
Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).
(
10.1126/science.1078973
) / Science by R Voulhoux (2003) -
Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005).
(
10.1016/j.cell.2005.02.015
) / Cell by T Wu (2005) -
Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).
(
10.1126/science.1188919
) / Science by CL Hagan (2010) -
Ieva, R., Tian, P., Peterson, J. H. & Bernstein, H. D. Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc. Natl Acad. Sci. USA 108, E383–E391 (2011).
(
10.1073/pnas.1103827108
) / Proc. Natl Acad. Sci. USA by R Ieva (2011) -
Noinaj, N., Kuszak, A. J., Balusek, C., Gumbart, J. C. & Buchanan, S. K. Lateral opening and exit pore formation are required for BamA function. Structure 22, 1055–1062 (2014).
(
10.1016/j.str.2014.05.008
) / Structure by N Noinaj (2014) -
Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).
(
10.1038/nature12521
) / Nature by N Noinaj (2013) -
Ieva, R. & Bernstein, H. D. Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc. Natl Acad. Sci. USA 106, 19120–19125 (2009).
(
10.1073/pnas.0907912106
) / Proc. Natl Acad. Sci. USA by R Ieva (2009) -
Oomen, C. J. et al. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266 (2004).
(
10.1038/sj.emboj.7600148
) / EMBO J. by CJ Oomen (2004) -
van den Berg, B. Crystal structure of a full-length autotransporter. J. Mol. Biol. 396, 627–633 (2010). This article defines the first atomic structure of a full-length autotransporter, including both the translocator and passenger domains.
(
10.1016/j.jmb.2009.12.061
) / J. Mol. Biol. by B van den Berg (2010) -
Meng, G., Surana, N. K., St Geme, J. W. & Waksman, G. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J. 25, 2297–2304 (2006).
(
10.1038/sj.emboj.7601132
) / EMBO J. by G Meng (2006) -
Ieva, R., Skillman, K. M. & Bernstein, H. D. Incorporation of a polypeptide segment into the β-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67, 188–201 (2008).
(
10.1111/j.1365-2958.2007.06048.x
) / Mol. Microbiol. by R Ieva (2008) -
Skillman, K. M., Barnard, T. J., Peterson, J. H., Ghirlando, R. & Bernstein, H. D. Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol. Microbiol. 58, 945–958 (2005).
(
10.1111/j.1365-2958.2005.04885.x
) / Mol. Microbiol. by KM Skillman (2005) -
Pavlova, O., Peterson, J. H., Ieva, R. & Bernstein, H. D. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc. Natl Acad. Sci. USA 110, E938–E947 (2013).
(
10.1073/pnas.1219076110
) / Proc. Natl Acad. Sci. USA by O Pavlova (2013) -
Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Struct. Mol. Biol. 19, 506–510 (2012).
(
10.1038/nsmb.2261
) / Nature Struct. Mol. Biol. by J Selkrig (2012) -
Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nature Struct. Mol. Biol. 20, 1318–1320 (2013).
(
10.1038/nsmb.2689
) / Nature Struct. Mol. Biol. by F Gruss (2013) -
Wright, K. J., Seed, P. C. & Hultgren, S. J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol. 9, 2230–2241 (2007).
(
10.1111/j.1462-5822.2007.00952.x
) / Cell. Microbiol. by KJ Wright (2007) -
Lillington, J., Geibel, S. & Waksman, G. Reprint of “Biogenesis and adhesion of type 1 and P pili”. Biochim. Biophys. Acta 1850, 554–564 (2015).
(
10.1016/j.bbagen.2014.07.009
) / Biochim. Biophys. Acta by J Lillington (2015) -
Mu, X. Q. & Bullitt, E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc. Natl Acad. Sci. USA 103, 9861–9866 (2006).
(
10.1073/pnas.0509620103
) / Proc. Natl Acad. Sci. USA by XQ Mu (2006) -
Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323, 845–857 (2002).
(
10.1016/S0022-2836(02)01005-7
) / J. Mol. Biol. by E Hahn (2002) -
Choudhury, D. et al. X-ray structure of the FimC–FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066 (1999).
(
10.1126/science.285.5430.1061
) / Science by D Choudhury (1999) -
Hultgren, S. J., Normark, S. & Abraham, S. N. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu. Rev. Microbiol. 45, 383–415 (1991).
(
10.1146/annurev.mi.45.100191.002123
) / Annu. Rev. Microbiol. by SJ Hultgren (1991) -
Vetsch, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431, 329–333 (2004).
(
10.1038/nature02891
) / Nature by M Vetsch (2004) -
Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999).
(
10.1126/science.285.5430.1058
) / Science by FG Sauer (1999) -
Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature 474, 49–53 (2011). This paper provides the first structural insight into the mechanism of pilus assembly.
(
10.1038/nature10109
) / Nature by G Phan (2011) -
Geibel, S., Procko, E., Hultgren, S. J., Baker, D. & Waksman, G. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496, 243–246 (2013).
(
10.1038/nature12007
) / Nature by S Geibel (2013) -
Remaut, H. et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted β strand displacement mechanism. Mol. Cell 22, 831–842 (2006).
(
10.1016/j.molcel.2006.05.033
) / Mol. Cell by H Remaut (2006) -
Verger, D., Miller, E., Remaut, H., Waksman, G. & Hultgren, S. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep. 7, 1228–1232 (2006).
(
10.1038/sj.embor.7400833
) / EMBO Rep. by D Verger (2006) -
Olsen, A., Jonsson, A. & Normark, S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655 (1989).
(
10.1038/338652a0
) / Nature by A Olsen (1989) -
Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol. Microbiol. 18, 661–670 (1995).
(
10.1111/j.1365-2958.1995.mmi_18040661.x
) / Mol. Microbiol. by M Hammar (1995) -
Hammer, N. D. et al. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J. Mol. Biol. 422, 376–389 (2012).
(
10.1016/j.jmb.2012.05.043
) / J. Mol. Biol. by ND Hammer (2012) -
Robinson, L. S., Ashman, E. M., Hultgren, S. J. & Chapman, M. R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol. Microbiol. 59, 870–881 (2006).
(
10.1111/j.1365-2958.2005.04997.x
) / Mol. Microbiol. by LS Robinson (2006) -
Wang, X., Smith, D. R., Jones, J. W. & Chapman, M. R. In vitro polymerization of a functional Escherichia coli amyloid protein. J. Biol. Chem. 282, 3713–3719 (2007).
(
10.1074/jbc.M609228200
) / J. Biol. Chem. by X Wang (2007) -
Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014). This study provides the first structure of the translocation channel in the curli system.
(
10.1038/nature13768
) / Nature by P Goyal (2014) -
Takagi, F., Koga, N. & Takada, S. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc. Natl Acad. Sci. USA 100, 11367–11372 (2003).
(
10.1073/pnas.1831920100
) / Proc. Natl Acad. Sci. USA by F Takagi (2003) -
Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).
(
10.1016/S0092-8674(01)00517-7
) / Cell by A Brinker (2001) -
Nenninger, A. A., Robinson, L. S. & Hultgren, S. J. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc. Natl Acad. Sci. USA 106, 900–905 (2009).
(
10.1073/pnas.0812143106
) / Proc. Natl Acad. Sci. USA by AA Nenninger (2009) -
Hodgkinson, J. L. et al. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nature Struct. Mol. Biol. 16, 477–485 (2009).
(
10.1038/nsmb.1599
) / Nature Struct. Mol. Biol. by JL Hodgkinson (2009) -
Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).
(
10.1038/nature05135
) / Nature by MC Leake (2006) -
Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Rev. Microbiol. 7, 206–214 (2009).
(
10.1038/nrmicro2069
) / Nature Rev. Microbiol. by TJ Knowles (2009) -
Palomino, C., Marin, E. & Fernandez, L. A. The fimbrial usher FimD follows the SurA–BamB pathway for its assembly in the outer membrane of Escherichia coli. J. Bacteriol. 193, 5222–5230 (2011).
(
10.1128/JB.05585-11
) / J. Bacteriol. by C Palomino (2011) -
Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12, 651–661 (2003).
(
10.1016/j.molcel.2003.08.004
) / Mol. Cell by J Chen (2003) -
Yamagata, A. & Tainer, J. A. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J. 26, 878–890 (2007).
(
10.1038/sj.emboj.7601544
) / EMBO J. by A Yamagata (2007) -
Lu, C., Korotkov, K. V. & Hol, W. G. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J. Struct. Biol. 187, 223–235 (2014).
(
10.1016/j.jsb.2014.07.006
) / J. Struct. Biol. by C Lu (2014) -
Zarivach, R., Vuckovic, M., Deng, W., Finlay, B. B. & Strynadka, N. C. Structural analysis of a prototypical ATPase from the type III secretion system. Nature Struct. Mol. Biol. 14, 131–137 (2007).
(
10.1038/nsmb1196
) / Nature Struct. Mol. Biol. by R Zarivach (2007) -
Yeo, H. J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol. Cell 6, 1461–1472 (2000).
(
10.1016/S1097-2765(00)00142-8
) / Mol. Cell by HJ Yeo (2000) -
Steadman, D., Lo, A., Waksman, G. & Remaut, H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 9, 887–900 (2014).
(
10.2217/fmb.14.46
) / Future Microbiol. by D Steadman (2014) -
Ruer, S., Pinotsis, N., Steadman, D., Waksman, G. & Remaut, H. Virulence-targeted antibacterials: concept, promise, and susceptibility to resistance mechanisms. Chem. Biol. Drug Des. http://dx.doi.org/10.1111/cbdd.12517 (2015).
(
10.1111/cbdd.12517
) -
Houben, E. N., Korotkov, K. V. & Bitter, W. Take five — type VII secretion systems of Mycobacteria. Biochim. Biophys. Acta 1843, 1707–1716 (2014).
(
10.1016/j.bbamcr.2013.11.003
) / Biochim. Biophys. Acta by EN Houben (2014) -
Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).
(
10.1073/pnas.2235593100
) / Proc. Natl Acad. Sci. USA by SA Stanley (2003) -
Solomonson, M. et al. Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein type VII secretion system. J. Biol. Chem. 288, 17782–17790 (2013).
(
10.1074/jbc.M113.462036
) / J. Biol. Chem. by M Solomonson (2013) -
Korotkova, N. et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25–PPE41 dimer. Mol. Microbiol. 94, 367–384 (2014).
(
10.1111/mmi.12770
) / Mol. Microbiol. by N Korotkova (2014) -
Cegelski, L. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chem. Biol. 5, 913–919 (2009).
(
10.1038/nchembio.242
) / Nature Chem. Biol. by L Cegelski (2009) -
Duncan, M. C., Linington, R. G. & Auerbuch, V. Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Antimicrob. Agents Chemother. 56, 5433–5441 (2012).
(
10.1128/AAC.00975-12
) / Antimicrob. Agents Chemother. by MC Duncan (2012) -
Paschos, A. et al. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun. 79, 1033–1043 (2011).
(
10.1128/IAI.00993-10
) / Infect. Immun. by A Paschos (2011) -
Brinton, C. C. Jr. Non-flagellar appendages of bacteria. Nature 183, 782–786 (1959).
(
10.1038/183782a0
) / Nature by CC Brinton Jr. (1959) -
d'Enfert, C., Ryter, A. & Pugsley, A. P. Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J. 6, 3531–3538 (1987).
(
10.1002/j.1460-2075.1987.tb02679.x
) / EMBO J. by C d'Enfert (1987) -
Galán, J. E. & Curtiss, R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl Acad. Sci. USA 86, 6383–6387 (1989).
(
10.1073/pnas.86.16.6383
) / Proc. Natl Acad. Sci. USA by JE Galán (1989) -
Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000).
(
10.1038/35016007
) / Nature by V Koronakis (2000) -
Kuldau, G. A., De Vos, G., Owen, J., McCaffrey, G. & Zambryski, P. The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol. Gen. Genet. 221, 256–266 (1990).
(
10.1007/BF00261729
) / Mol. Gen. Genet. by GA Kuldau (1990) -
Ma, D. et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol. 175, 6299–6313 (1993).
(
10.1128/jb.175.19.6299-6313.1993
) / J. Bacteriol. by D Ma (1993) -
Welch, R. A., Dellinger, E. P., Minshew, B. & Falkow, S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294, 665–667 (1981).
(
10.1038/294665a0
) / Nature by RA Welch (1981) -
Pohlner, J., Halter, R., Beyreuther, K. & Meyer, T. F. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462 (1987).
(
10.1038/325458a0
) / Nature by J Pohlner (1987) -
Korotkov, K. V. & Hol, W. G. Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nature Struct. Mol. Biol. 15, 462–468 (2008).
(
10.1038/nsmb.1426
) / Nature Struct. Mol. Biol. by KV Korotkov (2008) -
Lederberg, J. & Tatum, E. L. Gene recombination in Escherichia coli. Nature 158, 558 (1946).
(
10.1038/158558a0
) / Nature by J Lederberg (1946)
Dates
Type | When |
---|---|
Created | 10 years, 3 months ago (May 15, 2015, 9:42 a.m.) |
Deposited | 3 years, 4 months ago (April 19, 2022, 12:21 p.m.) |
Indexed | 28 minutes ago (Aug. 28, 2025, 4:20 a.m.) |
Issued | 10 years, 3 months ago (May 15, 2015) |
Published | 10 years, 3 months ago (May 15, 2015) |
Published Online | 10 years, 3 months ago (May 15, 2015) |
Published Print | 10 years, 2 months ago (June 1, 2015) |
@article{Costa_2015, title={Secretion systems in Gram-negative bacteria: structural and mechanistic insights}, volume={13}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro3456}, DOI={10.1038/nrmicro3456}, number={6}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Costa, Tiago R. D. and Felisberto-Rodrigues, Catarina and Meir, Amit and Prevost, Marie S. and Redzej, Adam and Trokter, Martina and Waksman, Gabriel}, year={2015}, month=may, pages={343–359} }