Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
Bibliography

Waksman, G., & Hultgren, S. J. (2009). Structural biology of the chaperone–usher pathway of pilus biogenesis. Nature Reviews Microbiology, 7(11), 765–774.

Authors 2
  1. Gabriel Waksman (first)
  2. Scott J. Hultgren (additional)
References 76 Referenced 271
  1. Fronzes, R., Remaut, H. & Waksman, G. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27, 2271–2280 (2008). (10.1038/emboj.2008.155) / EMBO J. by R Fronzes (2008)
  2. Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone-usher pathway. Biochim. Biophys. Acta 1694, 259–267 (2004). (10.1016/j.bbamcr.2004.02.010) / Biochim. Biophys. Acta by FG Sauer (2004)
  3. Barnhart, M. M. et al. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc. Natl Acad. Sci. USA 97, 7709–7714 (2000). (10.1073/pnas.130183897) / Proc. Natl Acad. Sci. USA by MM Barnhart (2000)
  4. Dodson, K. W., Jacob-Dubuisson, F., Striker, R. T. & Hultgren, S. J. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc. Natl Acad. Sci. USA 90, 3670–3674 (1993). (10.1073/pnas.90.8.3670) / Proc. Natl Acad. Sci. USA by KW Dodson (1993)
  5. Thanassi, D. G. et al. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc. Natl Acad. Sci. USA 95, 3146–3151 (1998). (10.1073/pnas.95.6.3146) / Proc. Natl Acad. Sci. USA by DG Thanassi (1998)
  6. Nuccio, S. P. & Baumler, A. J. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol. Mol. Biol. Rev. 71, 551–575 (2007). (10.1128/MMBR.00014-07) / Microbiol. Mol. Biol. Rev. by SP Nuccio (2007)
  7. Kuehn, M. J., Heuser, J., Normark, S. & Hultgren, S. J. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356, 252–255 (1992). (10.1038/356252a0) / Nature by MJ Kuehn (1992)
  8. Baga, M., Norgren, M. & Normark, S. Biogenesis of E. coli Pap pili: PapH, a minor pilin subunit involved in cell anchoring and length modulation. Cell 49, 241–251 (1987). (10.1016/0092-8674(87)90565-4) / Cell by M Baga (1987)
  9. Verger, D., Miller, E., Remaut, H., Waksman, G. & Hultgren, S. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep. 7, 1228–1232 (2006). (10.1038/sj.embor.7400833) / EMBO Rep. by D Verger (2006)
  10. Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323, 845–857 (2002). (10.1016/S0022-2836(02)01005-7) / J. Mol. Biol. by E Hahn (2002)
  11. Hultgren, S. J. et al. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl Acad. Sci. USA 86, 4357–4361 (1989). (10.1073/pnas.86.12.4357) / Proc. Natl Acad. Sci. USA by SJ Hultgren (1989)
  12. Jones, C. H., Danese, P. N., Pinkner, J. S., Silhavy, T. J. & Hultgren, S. J. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J. 16, 6394–6406 (1997). (10.1093/emboj/16.21.6394) / EMBO J. by CH Jones (1997)
  13. Vetsch, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431, 329–333 (2004). (10.1038/nature02891) / Nature by M Vetsch (2004)
  14. Holmgren, A. & Branden, C. I. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342, 248–251 (1989). This study elucidates the structure of a periplasmic chaperone. (10.1038/342248a0) / Nature by A Holmgren (1989)
  15. Kuehn, M. J. et al. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262, 1234–1241 (1993). This paper describes the first structure of a complex between a periplasmic chaperone and a peptide derived from a pilin subunit. (10.1126/science.7901913) / Science by MJ Kuehn (1993)
  16. Slonim, L. N., Pinkner, J. S., Branden, C. I. & Hultgren, S. J. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J. 11, 4747–4756 (1992). (10.1002/j.1460-2075.1992.tb05580.x) / EMBO J. by LN Slonim (1992)
  17. Choudhury, D. et al. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066 (1999). (10.1126/science.285.5430.1061) / Science by D Choudhury (1999)
  18. Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999). This article and reference 17 present the structures of chaperone–subunit complexes and formulate the concepts of donor strand complementation for chaperone function and donor strand exchange for subunit assembly. Reference 17 also provides insights into receptor recognition by the type 1 pilus, as it contains the structure of the FimH lectin domain. (10.1126/science.285.5430.1058) / Science by FG Sauer (1999)
  19. Bann, J. G., Pinkner, J. S., Frieden, C. & Hultgren, S. J. Catalysis of protein folding by chaperones in pathogenic bacteria. Proc. Natl Acad. Sci. USA 101, 17389–17393 (2004). (10.1073/pnas.0408072101) / Proc. Natl Acad. Sci. USA by JG Bann (2004)
  20. Hung., D. L., Knight, S. D., Woods, R. M., Pinkner, J. S. & Hultgren, S. J. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J. 15, 3792–3805 (1996). (10.1002/j.1460-2075.1996.tb00753.x) / EMBO J. by SD Knight (1996)
  21. Zavialov, A. V. et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587–596 (2003). (10.1016/S0092-8674(03)00351-9) / Cell by AV Zavialov (2003)
  22. Remaut, H. et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted β strand displacement mechanism. Mol. Cell 22, 831–842 (2006). This paper presents the first evidence that donor strand exchange occurs through a 'zip-in, zip-out' mechanism that is initiated at the P5 pocket. (10.1016/j.molcel.2006.05.033) / Mol. Cell by H Remaut (2006)
  23. Anderson, K. L. et al. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol. Cell 15, 647–657 (2004). (10.1016/j.molcel.2004.08.003) / Mol. Cell by KL Anderson (2004)
  24. Sauer, F. G., Pinkner, J. S., Waksman, G. & Hultgren, S. J. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111, 543–551 (2002). This paper and reference 21 reveal the structures of a ternary complex containing a subunit in donor strand complementation with its cognate chaperone and the same subunit in donor strand exchange with a second subunit. Together with reference 17, these studies validate the concept of donor strand exchange. (10.1016/S0092-8674(02)01050-4) / Cell by FG Sauer (2002)
  25. Vetsch, M. et al. Mechanism of fibre assembly through the chaperone-usher pathway. EMBO Rep. 7, 734–738 (2006). (10.1038/sj.embor.7400722) / EMBO Rep. by M Vetsch (2006)
  26. Lindberg, F., Lund, B., Johansson, L. & Normark, S. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328, 84–87 (1987). (10.1038/328084a0) / Nature by F Lindberg (1987)
  27. Jacob-Dubuisson, F., Heuser, J., Dodson, K., Normark, S. & Hultgren, S. Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. EMBO J. 12, 837–847 (1993). (10.1002/j.1460-2075.1993.tb05724.x) / EMBO J. by F Jacob-Dubuisson (1993)
  28. Striker, R., Jacob-Dubuisson, F., Freiden, C. & Hultgren, S. J. Stable fiber-forming and nonfiber-forming chaperone-subunit complexes in pilus biogenesis. J. Biol. Chem. 269, 12233–12239 (1994). (10.1016/S0021-9258(17)32706-0) / J. Biol. Chem. by R Striker (1994)
  29. Lee, Y. M., Dodson, K. W. & Hultgren, S. J. Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli. J. Bacteriol. 189, 5276–5283 (2007). (10.1128/JB.01648-06) / J. Bacteriol. by YM Lee (2007)
  30. Rose, R. J. et al. Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry. Proc. Natl Acad. Sci. USA 105, 12873–12878 (2008). (10.1073/pnas.0802177105) / Proc. Natl Acad. Sci. USA by RJ Rose (2008)
  31. Verger, D. et al. Structural determinants of polymerization reactivity of the P pilus adaptor subunit PapF. Structure 16, 1724–1731 (2008). (10.1016/j.str.2008.08.012) / Structure by D Verger (2008)
  32. Saulino, E. T., Thanassi, D. G., Pinkner, J. S. & Hultgren, S. J. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J. 17, 2177–2185 (1998). (10.1093/emboj/17.8.2177) / EMBO J. by ET Saulino (1998)
  33. Nishiyama, M. et al. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J. 24, 2075–2086 (2005). This paper describes the first structure of the FimD N-terminal domain bound to a chaperone–subunit complex. (10.1038/sj.emboj.7600693) / EMBO J. by M Nishiyama (2005)
  34. Nishiyama, M., Ishikawa, T., Rechsteiner, H. & Glockshuber, R. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320, 376–379 (2008). This paper describes the first in vitro reconstitution of pilus biogenesis from purified components. (10.1126/science.1154994) / Science by M Nishiyama (2008)
  35. Remaut, H. et al. Fibre formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133, 640–652 (2008). This paper describes the structure of the translocation usher pore and proposes a general mechanism of usher function on the basis of the pore structure and a cryo-EM structure of the FimD usher bound to a secretion intermediate. (10.1016/j.cell.2008.03.033) / Cell by H Remaut (2008)
  36. Li, H. et al. The outer membrane usher forms a twin-pore secretion complex. J. Mol. Biol. 344, 1397–1407 (2004). (10.1016/j.jmb.2004.10.008) / J. Mol. Biol. by H Li (2004)
  37. So, S. S. & Thanassi, D. G. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol. Microbiol. 60, 364–375 (2006). (10.1111/j.1365-2958.2006.05111.x) / Mol. Microbiol. by SS So (2006)
  38. Huang, Y., Smith, B. S., Chen, L. X., Baxter, R. H. & Deisenhofer, J. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc. Natl Acad. Sci. USA 106, 7403–7407 (2009). (10.1073/pnas.0902789106) / Proc. Natl Acad. Sci. USA by Y Huang (2009)
  39. Thanassi, D. G., Stathopoulos, C., Dodson, K., Geiger, D. & Hultgren, S. J. Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis. J. Bacteriol. 184, 6260–6269 (2002). (10.1128/JB.184.22.6260-6269.2002) / J. Bacteriol. by DG Thanassi (2002)
  40. Nishiyama, M., Vetsch, M., Puorger, C., Jelesarov, I. & Glockshuber, R. Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD. J. Mol. Biol. 330, 513–525 (2003). (10.1016/S0022-2836(03)00591-6) / J. Mol. Biol. by M Nishiyama (2003)
  41. Capitani, G., Eidam, O. & Grutter, M. G. Evidence for a novel domain of bacterial outer membrane ushers. Proteins 65, 816–823 (2006). (10.1002/prot.21147) / Proteins by G Capitani (2006)
  42. Ng, T. W., Akman, L., Osisami, M. & Thanassi, D. G. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. J. Bacteriol. 186, 5321–5331 (2004). (10.1128/JB.186.16.5321-5331.2004) / J. Bacteriol. by TW Ng (2004)
  43. Eidam, O., Dworkowski, F. S., Glockshuber, R., Grutter, M. G. & Capitani, G. Crystal structure of the ternary FimC-FimFt-FimDN complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD. FEBS Lett. 582, 651–655 (2008). (10.1016/j.febslet.2008.01.030) / FEBS Lett. by O Eidam (2008)
  44. Munera, D., Palomino, C. & Fernandez, L. A. Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher. Mol. Microbiol. 69, 911–925 (2008). (10.1111/j.1365-2958.2008.06325.x) / Mol. Microbiol. by D Munera (2008)
  45. Munera, D., Hultgren, S. & Fernandez, L. A. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol. Microbiol. 64, 333–346 (2007). (10.1111/j.1365-2958.2007.05657.x) / Mol. Microbiol. by D Munera (2007)
  46. Saulino, E. T., Bullitt, E. & Hultgren, S. J. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc. Natl Acad. Sci. USA 97, 9240–9245 (2000). (10.1073/pnas.160070497) / Proc. Natl Acad. Sci. USA by ET Saulino (2000)
  47. Jacob-Dubuisson, F., Striker, R. & Hultgren, S. J. Chaperone-assisted self-assembly of pili independent of cellular energy. J. Biol. Chem. 269, 12447–12455 (1994). (10.1016/S0021-9258(18)99895-9) / J. Biol. Chem. by F Jacob-Dubuisson (1994)
  48. Zavialov, A. V. et al. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem. J. 389, 685–694 (2005). (10.1042/BJ20050426) / Biochem. J. by AV Zavialov (2005)
  49. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998). (10.1126/science.282.5393.1494) / Science by MA Mulvey (1998)
  50. Bahrani-Mougeot, F. K. et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45, 1079–1093 (2002). (10.1046/j.1365-2958.2002.03078.x) / Mol. Microbiol. by FK Bahrani-Mougeot (2002)
  51. Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000). (10.1093/emboj/19.12.2803) / EMBO J. by JJ Martinez (2000)
  52. Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA 93, 9630–9635 (1996). (10.1073/pnas.93.18.9630) / Proc. Natl Acad. Sci. USA by XR Wu (1996)
  53. Hung., C. S. et al. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44, 903–915 (2002). (10.1046/j.1365-2958.2002.02915.x) / Mol. Microbiol. by CS Hung. (2002)
  54. Merckel, M. C. et al. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J. Mol. Biol. 331, 897–905 (2003). (10.1016/S0022-2836(03)00841-6) / J. Mol. Biol. by MC Merckel (2003)
  55. Dodson, K. W. et al. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105, 733–743 (2001). (10.1016/S0092-8674(01)00388-9) / Cell by KW Dodson (2001)
  56. Roberts, J. A. et al. The Gal(α1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl Acad. Sci. USA 91, 11889–11893 (1994). (10.1073/pnas.91.25.11889) / Proc. Natl Acad. Sci. USA by JA Roberts (1994)
  57. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007). (10.1371/journal.pmed.0040329) / PLoS Med. by DA Rosen (2007)
  58. Henderson, J. P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009). (10.1371/journal.ppat.1000305) / PLoS Pathog. by JP Henderson (2009)
  59. Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nature Med. 13, 625–630 (2007). (10.1038/nm1572) / Nature Med. by BL Bishop (2007)
  60. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003). (10.1126/science.1084550) / Science by GG Anderson (2003)
  61. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001). (10.1128/IAI.69.7.4572-4579.2001) / Infect. Immun. by MA Mulvey (2001)
  62. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA 101, 1333–1338 (2004). (10.1073/pnas.0308125100) / Proc. Natl Acad. Sci. USA by SS Justice (2004)
  63. Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103, 14170–14175 (2006). (10.1073/pnas.0602136103) / Proc. Natl Acad. Sci. USA by IU Mysorekar (2006)
  64. Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001). (10.4049/jimmunol.166.2.1148) / J. Immunol. by JD Schilling (2001)
  65. Linder, H., Engberg, I., Baltzer, I. M., Jann, K. & Svanborg-Eden, C. Induction of inflammation by Escherichia coli on the mucosal level: requirement for adherence and endotoxin. Infect. Immun. 56, 1309–1313 (1988). (10.1128/iai.56.5.1309-1313.1988) / Infect. Immun. by H Linder (1988)
  66. Hedges, S., Anderson, P., Lidin-Janson, G., de Man, P. & Svanborg, C. Interleukin-6 response to deliberate colonization of the human urinary tract with Gram-negative bacteria. Infect. Immun. 59, 421–427 (1991). (10.1128/iai.59.1.421-427.1991) / Infect. Immun. by S Hedges (1991)
  67. Mysorekar, I. U., Mulvey, M. A., Hultgren, S. J. & Gordon, J. I. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J. Biol. Chem. 277, 7412–7419 (2002). (10.1074/jbc.M110560200) / J. Biol. Chem. by IU Mysorekar (2002)
  68. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009). (10.1016/j.chom.2009.04.005) / Cell Host Microbe by IU Mysorekar (2009)
  69. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276, 607–611 (1997). (10.1126/science.276.5312.607) / Science by S Langermann (1997)
  70. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000). (10.1086/315258) / J. Infect. Dis. by S Langermann (2000)
  71. Kihlberg, J., Hultgren, S. J., Normark, S. & Magnusson, G. Probing the combining site of the PapG adhesin of uropathogenic Escherichia coli bacteria by synthetic analogues of galabiose. J. Am. Chem. Soc. 111, 6364–6368 (1989). (10.1021/ja00198a056) / J. Am. Chem. Soc. by J Kihlberg (1989)
  72. Ohlsson, J., Jass, J., Uhlin, B. E., Kihlberg, J. & Nilsson, U. J. Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3, 772–779 (2002). (10.1002/1439-7633(20020802)3:8<772::AID-CBIC772>3.0.CO;2-8) / Chembiochem by J Ohlsson (2002)
  73. Pinkner, J. S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17897–17902 (2006). (10.1073/pnas.0606795103) / Proc. Natl Acad. Sci. USA by JS Pinkner (2006)
  74. Wellens, A. et al. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS ONE 3, e2040 (2008). (10.1371/journal.pone.0002040) / PLoS ONE by A Wellens (2008)
  75. Bouckaert, J. et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol. Microbiol. 55, 441–455 (2005). (10.1111/j.1365-2958.2004.04415.x) / Mol. Microbiol. by J Bouckaert (2005)
  76. Hedenstrom, M. et al. NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly. Org. Biomol. Chem. 3, 4193–4200 (2005). (10.1039/b511857c) / Org. Biomol. Chem. by M Hedenstrom (2005)
Dates
Type When
Created 15 years, 10 months ago (Oct. 12, 2009, 4:32 a.m.)
Deposited 4 months, 2 weeks ago (April 10, 2025, 9:33 a.m.)
Indexed 3 days, 5 hours ago (Aug. 22, 2025, 12:49 a.m.)
Issued 15 years, 10 months ago (Oct. 12, 2009)
Published 15 years, 10 months ago (Oct. 12, 2009)
Published Online 15 years, 10 months ago (Oct. 12, 2009)
Published Print 15 years, 9 months ago (Nov. 1, 2009)
Funders 0

None

@article{Waksman_2009, title={Structural biology of the chaperone–usher pathway of pilus biogenesis}, volume={7}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro2220}, DOI={10.1038/nrmicro2220}, number={11}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Waksman, Gabriel and Hultgren, Scott J.}, year={2009}, month=oct, pages={765–774} }