Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
Authors 4
  1. Timothy J. Knowles (first)
  2. Anthony Scott-Tucker (additional)
  3. Michael Overduin (additional)
  4. Ian R. Henderson (additional)
References 79 Referenced 306
  1. Bos, M. P., Robert, V. & Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61, 191–214 (2007). (10.1146/annurev.micro.61.080706.093245) / Annu. Rev. Microbiol. by MP Bos (2007)
  2. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002). (10.1038/nature00827) / Nature by C Breyton (2002)
  3. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). (10.1038/nature02218) / Nature by B Van den Berg (2004)
  4. Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008). (10.1146/annurev.biochem.77.061606.160747) / Annu. Rev. Biochem. by AJ Driessen (2008)
  5. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007). (10.1038/nature06384) / Nature by TA Rapoport (2007)
  6. Qi, H. Y., Hyndman, J. B. & Bernstein, H. D. DnaK promotes the selective export of outer membrane protein precursors in SecA-deficient Escherichia coli. J. Biol. Chem. 277, 51077–51083 (2002). (10.1074/jbc.M209238200) / J. Biol. Chem. by HY Qi (2002)
  7. Papanikou, E., Karamanou, S. & Economou, A. Bacterial protein secretion through the translocase nanomachine. Nature Rev. Microbiol. 5, 839–851 (2007). (10.1038/nrmicro1771) / Nature Rev. Microbiol. by E Papanikou (2007)
  8. Sklar, J. G., Wu, T., Kahne, D. & Silhavy, T. J. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21, 2473–2484 (2007). (10.1101/gad.1581007) / Genes Dev. by JG Sklar (2007)
  9. Onufryk, C., Crouch, M. L., Fang, F. C. & Gross, C. A. Characterization of six lipoproteins in the σE regulon. J. Bacteriol. 187, 4552–4561 (2005). (10.1128/JB.187.13.4552-4561.2005) / J. Bacteriol. by C Onufryk (2005)
  10. Rizzitello, A. E., Harper, J. R. & Silhavy, T. J. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 183, 6794–6800 (2001). (10.1128/JB.183.23.6794-6800.2001) / J. Bacteriol. by AE Rizzitello (2001)
  11. Werner, J. & Misra, R. YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli. Mol. Microbiol. 57, 1450–1459 (2005). (10.1111/j.1365-2958.2005.04775.x) / Mol. Microbiol. by J Werner (2005)
  12. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005). First documented evidence that BamA forms a heterooligomeric structure; the BamB–D lipoproteins were identified as accessory components of the complex. (10.1016/j.cell.2005.02.015) / Cell by T Wu (2005)
  13. Doerrler, W. T. & Raetz, C. R. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280, 27679–27687 (2005). (10.1074/jbc.M504796200) / J. Biol. Chem. by WT Doerrler (2005)
  14. Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61, 151–164 (2006). (10.1111/j.1365-2958.2006.05211.x) / Mol. Microbiol. by JC Malinverni (2006)
  15. Collin, S., Guilvout, I., Chami, M. & Pugsley, A. P. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol. Microbiol. 64, 1350–1357 (2007). (10.1111/j.1365-2958.2007.05743.x) / Mol. Microbiol. by S Collin (2007)
  16. Guilvout, I. et al. In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD. J. Mol. Biol. 382, 13–23 (2008). (10.1016/j.jmb.2008.06.055) / J. Mol. Biol. by I Guilvout (2008)
  17. Bolla, J. M., Lazdunski, C. & Pages, J. M. The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis. EMBO J. 7, 3595–3599 (1988). (10.1002/j.1460-2075.1988.tb03237.x) / EMBO J. by JM Bolla (1988)
  18. Sklar, J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 6400–6405 (2007). (10.1073/pnas.0701579104) / Proc. Natl Acad. Sci. USA by JG Sklar (2007)
  19. Vuong, P., Bennion, D., Mantei, J., Frost, D. & Misra, R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 190, 1507–1517 (2008). (10.1128/JB.01477-07) / J. Bacteriol. by P Vuong (2008)
  20. Misra, R. First glimpse of the crystal structure of YaeT's POTRA domains. ACS Chem. Biol. 2, 649–651 (2007). (10.1021/cb700212p) / ACS Chem. Biol. by R Misra (2007)
  21. Gatsos, X. et al. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol. Rev. 32, 995–1009 (2008). (10.1111/j.1574-6976.2008.00130.x) / FEMS Microbiol. Rev. by X Gatsos (2008)
  22. Aoki, S. K. et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 70, 323–340 (2008). (10.1111/j.1365-2958.2008.06404.x) / Mol. Microbiol. by SK Aoki (2008)
  23. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003). The authors of this paper described, for the first time, the essential nature of BamA and its role in the biogenesis of membrane proteins. (10.1126/science.1078973) / Science by R Voulhoux (2003)
  24. Genevrois, S., Steeghs, L., Roholl, P., Letesson, J. J. & van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22, 1780–1789 (2003). (10.1093/emboj/cdg174) / EMBO J. by S Genevrois (2003)
  25. Bos, M. P., Tefsen, B., Geurtsen, J. & Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl Acad. Sci. USA 101, 9417–9422 (2004). (10.1073/pnas.0402340101) / Proc. Natl Acad. Sci. USA by MP Bos (2004)
  26. Sanchez-Pulido, L., Devos, D., Genevrois, S., Vicente, M. & Valencia, A. POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem. Sci. 28, 523–526 (2003). The POTRA domains were identified in a wide range of proteins through in silico predictions. (10.1016/j.tibs.2003.08.003) / Trends Biochem. Sci. by L Sanchez-Pulido (2003)
  27. Schleiff, E. & Soll, J. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep. 6, 1023–1027 (2005). (10.1038/sj.embor.7400563) / EMBO Rep. by E Schleiff (2005)
  28. Gentle, I. E., Burri, L. & Lithgow, T. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58, 1216–1225 (2005). (10.1111/j.1365-2958.2005.04906.x) / Mol. Microbiol. by IE Gentle (2005)
  29. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007). First identification of the crystal structure of POTRA 1–4 from E. coli BamA, which revealed the first structure of a POTRA fold. (10.1126/science.1143993) / Science by S Kim (2007)
  30. Knowles, T. J. et al. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol. Microbiol. 68, 1216–1227 (2008). A description of the NMR structures of POTRA 1–2 from E. coli BamA; this study detected interdomain flexibility and evidence for direct binding of nascent barrel proteins. (10.1111/j.1365-2958.2008.06225.x) / Mol. Microbiol. by TJ Knowles (2008)
  31. Gatzeva-Topalova, P. Z., Walton, T. A. & Sousa, M. C. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16, 1873–1881 (2008). (10.1016/j.str.2008.09.014) / Structure by PZ Gatzeva-Topalova (2008)
  32. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85–TpsB transporter superfamily. Science 317, 957–961 (2007). This paper documents the crystal structure of FhaC, a two-partner secretion system OMP that is related to BamA. The authors found a tandem POTRA domain fold that was associated with an integral outer membrane barrel domain. (10.1126/science.1143860) / Science by B Clantin (2007)
  33. Vanini, M. M., Spisni, A., Sforca, M. L., Pertinhez, T. A. & Benedetti, C. E. The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein–protein interaction. Proteins 71, 2051–2064 (2008). (10.1002/prot.21886) / Proteins by MM Vanini (2008)
  34. Reynolds, K. A. et al. Structural and computational characterization of the SHV-1 β-lactamase-β-lactamase inhibitor protein interface. J. Biol. Chem. 281, 26745–26753 (2006). (10.1074/jbc.M603878200) / J. Biol. Chem. by KA Reynolds (2006)
  35. Williams, J. C. et al. Structural and thermodynamic characterization of a cytoplasmic dynein light chain-intermediate chain complex. Proc. Natl Acad. Sci. USA 104, 10028–10033 (2007). (10.1073/pnas.0703614104) / Proc. Natl Acad. Sci. USA by JC Williams (2007)
  36. van den Ent, F. et al. Structural and mutational analysis of the cell division protein FtsQ. Mol. Microbiol. 68, 110–123 (2008). (10.1111/j.1365-2958.2008.06141.x) / Mol. Microbiol. by F van den Ent (2008)
  37. Robert, V. et al. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4, e377 (2006). (10.1371/journal.pbio.0040377) / PLoS Biol. by V Robert (2006)
  38. Struyve, M., Moons, M. & Tommassen, J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218, 141–148 (1991). (10.1016/0022-2836(91)90880-F) / J. Mol. Biol. by M Struyve (1991)
  39. Habib, S. J. et al. The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 176, 77–88 (2007). (10.1083/jcb.200602050) / J. Cell Biol. by SJ Habib (2007)
  40. Bos, M. P., Robert, V. & Tommassen, J. Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep. 8, 1149–1154 (2007). (10.1038/sj.embor.7401092) / EMBO Rep. by MP Bos (2007)
  41. Stenberg, F. et al. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280, 34409–34419 (2005). (10.1074/jbc.M506479200) / J. Biol. Chem. by F Stenberg (2005)
  42. Surana, N. K. et al. Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc. Natl Acad. Sci. USA 101, 14497–14502 (2004). (10.1073/pnas.0404679101) / Proc. Natl Acad. Sci. USA by NK Surana (2004)
  43. Li, H., Grass, S., Wang, T., Liu, T. & St Geme, J. W. 3rd. Structure of the Haemophilus influenzae HMW1B translocator protein: evidence for a twin pore. J. Bacteriol. 189, 7497–7502 (2007). (10.1128/JB.00541-07) / J. Bacteriol. by H Li (2007)
  44. Fussenegger, M., Facius, D., Meier, J. & Meyer, T. F. A novel peptidoglycan-linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae. Mol. Microbiol. 19, 1095–1105 (1996). (10.1046/j.1365-2958.1996.457984.x) / Mol. Microbiol. by M Fussenegger (1996)
  45. Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21, 932–939 (1999). (10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N) / Bioessays by GL Blatch (1999)
  46. D'Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003). (10.1016/j.tibs.2003.10.007) / Trends Biochem. Sci. by LD D'Andrea (2003)
  47. Chan, N. C., Likic, V. A., Waller, R. F., Mulhern, T. D. & Lithgow, T. The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J. Mol. Biol. 358, 1010–1022 (2006). (10.1016/j.jmb.2006.02.062) / J. Mol. Biol. by NC Chan (2006)
  48. Wu, Y. & Sha, B. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nature Struct. Mol. Biol. 13, 589–593 (2006). (10.1038/nsmb1106) / Nature Struct. Mol. Biol. by Y Wu (2006)
  49. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121, 307–317 (2005). (10.1016/j.cell.2005.02.014) / Cell by N Ruiz (2005)
  50. Charlson, E. S., Werner, J. N. & Misra, R. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J. Bacteriol. 188, 7186–7194 (2006). (10.1128/JB.00571-06) / J. Bacteriol. by ES Charlson (2006)
  51. Rolhion, N., Barnich, N., Claret, L. & Darfeuille-Michaud, A. Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J. Bacteriol. 187, 2286–2296 (2005). (10.1128/JB.187.7.2286-2296.2005) / J. Bacteriol. by N Rolhion (2005)
  52. Khairnar, N. P., Kamble, V. A., Mangoli, S. H., Apte, S. K. & Misra, H. S. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol. Microbiol. 65, 294–304 (2007). (10.1111/j.1365-2958.2007.05779.x) / Mol. Microbiol. by NP Khairnar (2007)
  53. Ruiz, N., Kahne, D. & Silhavy, T. J. Advances in understanding bacterial outer-membrane biogenesis. Nature Rev. Microbiol. 4, 57–66 (2006). (10.1038/nrmicro1322) / Nature Rev. Microbiol. by N Ruiz (2006)
  54. Lipinska, B., Zylicz, M. & Georgopoulos, C. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol. 172, 1791–1797 (1990). (10.1128/jb.172.4.1791-1797.1990) / J. Bacteriol. by B Lipinska (1990)
  55. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999). (10.1016/S0092-8674(00)80743-6) / Cell by C Spiess (1999)
  56. Behrens, S., Maier, R., de Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001). (10.1093/emboj/20.1.285) / EMBO J. by S Behrens (2001)
  57. Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996). (10.1111/j.1365-2958.1996.tb02473.x) / Mol. Microbiol. by R Chen (1996)
  58. Ureta, A. R., Endres, R. G., Wingreen, N. S. & Silhavy, T. J. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J. Bacteriol. 189, 446–454 (2007). (10.1128/JB.01103-06) / J. Bacteriol. by AR Ureta (2007)
  59. Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999). (10.1074/jbc.274.35.24567) / J. Biol. Chem. by U Schafer (1999)
  60. Harms, N. et al. The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J. Biol. Chem. 276, 18804–18811 (2001). (10.1074/jbc.M011194200) / J. Biol. Chem. by N Harms (2001)
  61. Typas, A. et al. High-throughput, quantitative analyses of genetic interactions in E. coli. Nature Methods 5, 781–787 (2008). (10.1038/nmeth.1240) / Nature Methods by A Typas (2008)
  62. Arie, J. P., Sassoon, N. & Betton, J. M. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001). (10.1046/j.1365-2958.2001.02250.x) / Mol. Microbiol. by JP Arie (2001)
  63. Meli, A. C. et al. Channel properties of TpsB transporter FhaC point to two functional domains with a C-terminal protein-conducting pore. J. Biol. Chem. 281, 158–166 (2006). (10.1074/jbc.M508524200) / J. Biol. Chem. by AC Meli (2006)
  64. Ertel, F. et al. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J. Biol. Chem. 280, 28281–28289 (2005). (10.1074/jbc.M503035200) / J. Biol. Chem. by F Ertel (2005)
  65. Guedin, S. et al. Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J. Biol. Chem. 275, 30202–30210 (2000). (10.1074/jbc.M005515200) / J. Biol. Chem. by S Guedin (2000)
  66. Krojer, T. et al. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl Acad. Sci. USA 105, 7702–7707 (2008). (10.1073/pnas.0803392105) / Proc. Natl Acad. Sci. USA by T Krojer (2008)
  67. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008). This study indicated that DegP can form higher order homooligomers and is capable of interacting with folded outer membrane proteins and with lipid. (10.1038/nature07004) / Nature by T Krojer (2008)
  68. Jiang, J. et al. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl Acad. Sci. USA 105, 11939–11944 (2008). (10.1073/pnas.0805464105) / Proc. Natl Acad. Sci. USA by J Jiang (2008)
  69. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002). (10.1038/416455a) / Nature by T Krojer (2002)
  70. Huber, D. & Bukau, B. DegP: a protein “death star”. Structure 16, 989–990 (2008). (10.1016/j.str.2008.06.004) / Structure by D Huber (2008)
  71. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000). (10.1038/35016007) / Nature by V Koronakis (2000)
  72. Kozjak, V. et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523 (2003). (10.1074/jbc.C300442200) / J. Biol. Chem. by V Kozjak (2003)
  73. Inoue, K. & Potter, D. The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms. Plant J. 39, 354–365 (2004). (10.1111/j.1365-313X.2004.02135.x) / Plant J. by K Inoue (2004)
  74. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68, 692–744 (2004). (10.1128/MMBR.68.4.692-744.2004) / Microbiol. Mol. Biol. Rev. by IR Henderson (2004)
  75. Wiedemann, N. et al. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279, 18188–18194 (2004). (10.1074/jbc.M400050200) / J. Biol. Chem. by N Wiedemann (2004)
  76. Pfanner, N., Wiedemann, N., Meisinger, C. & Lithgow, T. Assembling the mitochondrial outer membrane. Nature Struct. Mol. Biol. 11, 1044–1048 (2004). (10.1038/nsmb852) / Nature Struct. Mol. Biol. by N Pfanner (2004)
  77. Kutik, S. et al. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132, 1011–1024 (2008). (10.1016/j.cell.2008.01.028) / Cell by S Kutik (2008)
  78. Meisinger, C. et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71 (2004). (10.1016/j.devcel.2004.06.003) / Dev. Cell by C Meisinger (2004)
  79. Meisinger, C. et al. The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J. 26, 2229–2239 (2007). (10.1038/sj.emboj.7601673) / EMBO J. by C Meisinger (2007)
Dates
Type When
Created 16 years, 7 months ago (Feb. 2, 2009, 12:10 a.m.)
Deposited 4 months, 3 weeks ago (April 10, 2025, 6:44 a.m.)
Indexed 1 week, 5 days ago (Aug. 20, 2025, 8:24 a.m.)
Issued 16 years, 7 months ago (Feb. 2, 2009)
Published 16 years, 7 months ago (Feb. 2, 2009)
Published Online 16 years, 7 months ago (Feb. 2, 2009)
Published Print 16 years, 6 months ago (March 1, 2009)
Funders 0

None

@article{Knowles_2009, title={Membrane protein architects: the role of the BAM complex in outer membrane protein assembly}, volume={7}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro2069}, DOI={10.1038/nrmicro2069}, number={3}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Knowles, Timothy J. and Scott-Tucker, Anthony and Overduin, Michael and Henderson, Ian R.}, year={2009}, month=feb, pages={206–214} }