Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
Bibliography

Zusman, D. R., Scott, A. E., Yang, Z., & Kirby, J. R. (2007). Chemosensory pathways, motility and development in Myxococcus xanthus. Nature Reviews Microbiology, 5(11), 862–872.

Authors 4
  1. David R. Zusman (first)
  2. Ansley E. Scott (additional)
  3. Zhaomin Yang (additional)
  4. John R. Kirby (additional)
References 109 Referenced 252
  1. Kaiser, D. Signaling in myxobacteria. Annu. Rev. Microbiol. 58, 75–98 (2004). (10.1146/annurev.micro.58.030603.123620) / Annu. Rev. Microbiol. by D Kaiser (2004)
  2. Kaiser, D. A microbial genetic journey. Annu. Rev. Microbiol. 60, 1–25 (2006). (10.1146/annurev.micro.60.080805.142209) / Annu. Rev. Microbiol. by D Kaiser (2006)
  3. Kaiser, D. Coupling cell movement to multicellular development in myxobacteria. Nature Rev. Microbiol. 1, 45–54 (2003). (10.1038/nrmicro733) / Nature Rev. Microbiol. by D Kaiser (2003)
  4. Shimkets, L. J. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53, 525–549 (1999). (10.1146/annurev.micro.53.1.525) / Annu. Rev. Microbiol. by LJ Shimkets (1999)
  5. Reichenbach, H. The ecology of the myxobacteria. Environmen. Microbiol. 1, 15–21 (1999). (10.1046/j.1462-2920.1999.00016.x) / Environmen. Microbiol. by H Reichenbach (1999)
  6. Baker, M. D., Wolanin, P. M. & Stock, J. B. Signal transduction in bacterial chemotaxis. Bioessays 28, 9–22 (2006). (10.1002/bies.20343) / Bioessays by MD Baker (2006)
  7. McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55, 49–75 (2001). (10.1146/annurev.micro.55.1.49) / Annu. Rev. Microbiol. by MJ McBride (2001)
  8. Rosenberg, E., Keller, K. H. & Dworkin, M. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129, 770–777 (1977). (10.1128/JB.129.2.770-777.1977) / J. Bacteriol. by E Rosenberg (1977)
  9. Goldman, B. S. et al. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl Acad. Sci. USA 103, 15200–15205 (2006). (10.1073/pnas.0607335103) / Proc. Natl Acad. Sci. USA by BS Goldman (2006)
  10. McBride, M. J. & Zusman, D. R. Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol. Lett. 137, 227–231 (1996). (10.1111/j.1574-6968.1996.tb08110.x) / FEMS Microbiol. Lett. by MJ McBride (1996)
  11. Berleman, J. E., Chumley, T., Cheung, P. & Kirby, J. R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006). (10.1128/JB.00559-06) / J. Bacteriol. by JE Berleman (2006)
  12. Igoshin, O. A., Mogilner, A., Welch, R. D., Kaiser, D. & Oster, G. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl Acad. Sci. USA 98, 14913–14918 (2001). (10.1073/pnas.221579598) / Proc. Natl Acad. Sci. USA by OA Igoshin (2001)
  13. Sager, B. & Kaiser, D. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8, 2793–2804 (1994). (10.1101/gad.8.23.2793) / Genes Dev. by B Sager (1994)
  14. Sliusarenko, O., Neu, J., Zusman, D. R. & Oster, G. Accordion waves in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 103, 1534–1539 (2006). (10.1073/pnas.0507720103) / Proc. Natl Acad. Sci. USA by O Sliusarenko (2006)
  15. O'Connor, K. A. & Zusman, D. R. Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus. J. Bacteriol. 173, 3342–3355 (1991). (10.1128/jb.173.11.3342-3355.1991) / J. Bacteriol. by KA O'Connor (1991)
  16. Wireman, J. W. & Dworkin, M. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129, 798–802 (1977). (10.1128/JB.129.2.798-802.1977) / J. Bacteriol. by JW Wireman (1977)
  17. Berleman, J. E. & Kirby, J. R. multicellular development in Myxococcus xanthus is stimulated by predator–prey interactions. J. Bacteriol. 189, 5675–5682 (2007). (10.1128/JB.00544-07) / J. Bacteriol. by JE Berleman (2007)
  18. Hodgkin, J. & Kaiser, D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl Acad. Sci. USA 74, 2938–2942 (1977). (10.1073/pnas.74.7.2938) / Proc. Natl Acad. Sci. USA by J Hodgkin (1977)
  19. Hodgkin, J. & Kaiser, D. Genetics of gliding motility in Myxococcus xanthus (myxobacteriales) — two gene systems control movement. Mol. Gen. Genet. 171, 177–191 (1979). This is a seminal paper that showed that there are two motility systems in M. xanthus. (10.1007/BF00270004) / Mol. Gen. Genet. by J Hodgkin (1979)
  20. Stephens, K., Hartzell, P. & Kaiser, D. Gliding motility in Myxococcus xanthus: mgl locus, RNA, and predicted protein products. J. Bacteriol. 171, 819–830 (1989). (10.1128/jb.171.2.819-830.1989) / J. Bacteriol. by K Stephens (1989)
  21. Hartzell, P. L. Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. Proc. Natl Acad. Sci. USA 94, 9881–9886 (1997). (10.1073/pnas.94.18.9881) / Proc. Natl Acad. Sci. USA by PL Hartzell (1997)
  22. Barnes, G., Louie, K. A. & Botstein, D. Yeast proteins associated with microtubules in vitro and in vivo. Mol. Biol. Cell 3, 29–47 (1992). (10.1091/mbc.3.1.29) / Mol. Biol. Cell by G Barnes (1992)
  23. Yang, R. et al. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J. Bacteriol. 186, 6168–6178 (2004). (10.1128/JB.186.18.6168-6178.2004) / J. Bacteriol. by R Yang (2004)
  24. Ward, M. J., Lew, H. & Zusman, D. R. Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol. Microbiol. 37, 1357–1371 (2000). (10.1046/j.1365-2958.2000.02079.x) / Mol. Microbiol. by MJ Ward (2000)
  25. Lancero, H. et al. Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiology 150, 4085–4093 (2004). (10.1099/mic.0.27381-0) / Microbiology by H Lancero (2004)
  26. Zusman, D. R. “Frizzy” mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J. Bacteriol. 150, 1430–1437 (1982). (10.1128/JB.150.3.1430-1437.1982) / J. Bacteriol. by DR Zusman (1982)
  27. Blackhart, B. D. & Zusman, D. R. “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl Acad. Sci. USA 82, 8767–8770 (1985). This paper showed that the Frz system controls the frequency of cell reversals. (10.1073/pnas.82.24.8767) / Proc. Natl Acad. Sci. USA by BD Blackhart (1985)
  28. McBride, M. J., Weinberg, R. A. & Zusman, D. R. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natl Acad. Sci. USA 86, 424–428 (1989). This paper showed that the frz genes encode chemosensory homologues. (10.1073/pnas.86.2.424) / Proc. Natl Acad. Sci. USA by MJ McBride (1989)
  29. Ward, M. J. & Zusman, D. R. Motility in Myxococcus xanthus and its role in developmental aggregation. Curr. Opin. Microbiol. 2, 624–629 (1999). (10.1016/S1369-5274(99)00032-6) / Curr. Opin. Microbiol. by MJ Ward (1999)
  30. Inclan, Y. F., Vlamakis, H. C. & Zusman, D. R. FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol. Microbiol. 65, 90–102 (2007). (10.1111/j.1365-2958.2007.05774.x) / Mol. Microbiol. by YF Inclan (2007)
  31. Fraser, J. S. et al. An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS. Mol. Microbiol. 65, 319–332 (2007). (10.1111/j.1365-2958.2007.05785.x) / Mol. Microbiol. by JS Fraser (2007)
  32. Mignot, T., Merlie, J. P. Jr & Zusman, D. R. Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol. Microbiol. 65, 363–372 (2007). (10.1111/j.1365-2958.2007.05789.x) / Mol. Microbiol. by T Mignot (2007)
  33. Dworkin, M. & Eide, D. Myxococcus xanthus does not respond chemotactically to moderate concentration gradients. J. Bacteriol. 154, 437–442 (1983). (10.1128/JB.154.1.437-442.1983) / J. Bacteriol. by M Dworkin (1983)
  34. Shi, W., Kohler, T. & Zusman, D. R. Chemotaxis plays a role in the social behaviour of Myxococcus xanthus. Mol. Microbiol. 9, 601–611 (1993). (10.1111/j.1365-2958.1993.tb01720.x) / Mol. Microbiol. by W Shi (1993)
  35. Kearns, D. B. & Shimkets, L. J. Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol. 9, 126–129 (2001). This paper describes lipid chemotaxis in M. xanthus. (10.1016/S0966-842X(01)01948-5) / Trends Microbiol. by DB Kearns (2001)
  36. McBride, M. J. & Zusman, D. R. FrzCD, a methyl-accepting taxis protein from Myxococcus xanthus, shows modulated methylation during fruiting body formation. J. Bacteriol. 175, 4936–4940 (1993). (10.1128/jb.175.15.4936-4940.1993) / J. Bacteriol. by MJ McBride (1993)
  37. Geng, Y., Yang, Z., Downard, J., Zusman, D. & Shi, W. Methylation of FrzCD defines a discrete step in the developmental program of Myxococcus xanthus. J. Bacteriol. 180, 5765–5768 (1998). (10.1128/JB.180.21.5765-5768.1998) / J. Bacteriol. by Y Geng (1998)
  38. Gorski, L., Gronewold, T. & Kaiser, D. A σ54 activator protein necessary for spore differentiation within the fruiting body of Myxococcus xanthus. J. Bacteriol. 182, 2438–2444 (2000). (10.1128/JB.182.9.2438-2444.2000) / J. Bacteriol. by L Gorski (2000)
  39. Sun, H. & Shi, W. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J. Bacteriol. 183, 4786–4795 (2001). (10.1128/JB.183.16.4786-4795.2001) / J. Bacteriol. by H Sun (2001)
  40. Sun, H. & Shi, W. Analyses of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183, 6733–6739 (2001). (10.1128/JB.183.23.6733-6739.2001) / J. Bacteriol. by H Sun (2001)
  41. Boysen, A., Ellehauge, E., Julien, B. & Sogaard-Andersen, L. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 184, 1540–1546 (2002). (10.1128/JB.184.6.1540-1546.2002) / J. Bacteriol. by A Boysen (2002)
  42. Ellehauge, E., Norregaard-Madsen, M. & Sogaard-Andersen, L. The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol. Microbiol. 30, 807–817 (1998). (10.1046/j.1365-2958.1998.01113.x) / Mol. Microbiol. by E Ellehauge (1998)
  43. Sogaard-Andersen, L. et al. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol. Microbiol. 48, 1–8 (2003). (10.1046/j.1365-2958.2003.03399.x) / Mol. Microbiol. by L Sogaard-Andersen (2003)
  44. Rasmussen, A. A., Porter, S. L., Armitage, J. P. & Sogaard-Andersen, L. Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus. Mol. Microbiol. 56, 1358–1372 (2005). (10.1111/j.1365-2958.2005.04629.x) / Mol. Microbiol. by AA Rasmussen (2005)
  45. Yang, Z., Geng, Y., Xu, D., Kaplan, H. B. & Shi, W. A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol. Microbiol. 30, 1123–1130 (1998). This was the first paper to describe the Dif chemosensory system. (10.1046/j.1365-2958.1998.01160.x) / Mol. Microbiol. by Z Yang (1998)
  46. Li, Y. et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 5443–5448 (2003). (10.1073/pnas.0836639100) / Proc. Natl Acad. Sci. USA by Y Li (2003)
  47. Yang, Z. & Li, Z. Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system. Arch. Microbiol. 183, 243–252 (2005). (10.1007/s00203-005-0767-8) / Arch. Microbiol. by Z Yang (2005)
  48. Bellenger, K., Ma, X., Shi, W. & Yang, Z. A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis. J. Bacteriol. 184, 5654–5660 (2002). (10.1128/JB.184.20.5654-5660.2002) / J. Bacteriol. by K Bellenger (2002)
  49. Yang, Z. et al. Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol. 182, 5793–5798 (2000). (10.1128/JB.182.20.5793-5798.2000) / J Bacteriol. by Z Yang (2000)
  50. Black, W. P. & Yang, Z. Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J. Bacteriol. 186, 1001–1008 (2004). (10.1128/JB.186.4.1001-1008.2004) / J. Bacteriol. by WP Black (2004)
  51. Bonner, P. J. et al. The Dif chemosensory pathway is directly involved in phosphatidylethanolamine sensory transduction in Myxococcus xanthus. Mol. Microbiol. 57, 1499–1508 (2005). (10.1111/j.1365-2958.2005.04785.x) / Mol. Microbiol. by PJ Bonner (2005)
  52. Black, W. P., Xu, Q. & Yang, Z. Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol. Microbiol. 61, 447–456 (2006). (10.1111/j.1365-2958.2006.05230.x) / Mol. Microbiol. by WP Black (2006)
  53. Xu, Q., Black, W. P., Ward, S. M. & Yang, Z. Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX–DifA interspecies chimera. J. Bacteriol. 187, 6410–6418 (2005). (10.1128/JB.187.18.6410-6418.2005) / J. Bacteriol. by Q Xu (2005)
  54. Bonner, P. J. & Shimkets, L. J. Phospholipid directed motility of surface-motile bacteria. Mol. Microbiol. 61, 1101–1109 (2006). (10.1111/j.1365-2958.2006.05314.x) / Mol. Microbiol. by PJ Bonner (2006)
  55. Kearns, D. B., Bonner, P. J., Smith, D. R. & Shimkets, L. J. An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J. Bacteriol. 184, 1678–1684 (2002). This paper showed that the Che3 system controls gene expression during development. (10.1128/JB.184.6.1678-1684.2002) / J. Bacteriol. by DB Kearns (2002)
  56. Kearns, D. B., Campbell, B. D. & Shimkets, L. J. Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant. Proc. Natl Acad. Sci. USA 97, 11505–11510 (2000). (10.1073/pnas.210448597) / Proc. Natl Acad. Sci. USA by DB Kearns (2000)
  57. Kirby, J. R. & Zusman, D. R. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 2008–2013 (2003). (10.1073/pnas.0330944100) / Proc. Natl Acad. Sci. USA by JR Kirby (2003)
  58. Vlamakis, H. C., Kirby, J. R. & Zusman, D. R. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52, 1799–1811 (2004). (10.1111/j.1365-2958.2004.04098.x) / Mol. Microbiol. by HC Vlamakis (2004)
  59. Lee, K. & Shimkets, L. J. Suppression of a signaling defect during Myxococcus xanthus development. J. Bacteriol. 178, 977–984 (1996). (10.1128/jb.178.4.977-984.1996) / J. Bacteriol. by K Lee (1996)
  60. Berleman, J. E. & Bauer, C. E. A Che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol. Microbiol. 55, 1390–1402 (2005). (10.1111/j.1365-2958.2005.04489.x) / Mol. Microbiol. by JE Berleman (2005)
  61. Hickman, J. W., Tifrea, D. F. & Harwood, C. S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl Acad. Sci. USA 102, 14422–14427 (2005). (10.1073/pnas.0507170102) / Proc. Natl Acad. Sci. USA by JW Hickman (2005)
  62. Whitchurch, C. B. et al. Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 52, 873–893 (2004). (10.1111/j.1365-2958.2004.04026.x) / Mol. Microbiol. by CB Whitchurch (2004)
  63. D'Argenio, D. A., Gallagher, L. A., Berg, C. A. & Manoil, C. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 1466–1471 (2001). (10.1128/JB.183.4.1466-1471.2001) / J. Bacteriol. by DA D'Argenio (2001)
  64. Guo D, W. Y., Kaplan HB. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182, 4564–4571 (2000). (10.1128/JB.182.16.4564-4571.2000) / J. Bacteriol. by WY Guo D (2000)
  65. Alley, M. R., Gomes, S. L., Alexander, W. & Shapiro, L. Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus. Genetics 129, 333–341 (1991). (10.1093/genetics/129.2.333) / Genetics by MR Alley (1991)
  66. Maddock, J. R. & Shapiro, L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723 (1993). (10.1126/science.8456299) / Science by JR Maddock (1993)
  67. Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998). (10.1038/30018) / Nature by D Bray (1998)
  68. Parkinson, J. S., Ames, P. & Studdert, C. A. Collaborative signaling by bacterial chemoreceptors. Curr. Opin. Microbiol. 8, 116–121 (2005). (10.1016/j.mib.2005.02.008) / Curr. Opin. Microbiol. by JS Parkinson (2005)
  69. Segall, J. E., Block, S. M. & Berg, H. C. Temporal comparisons in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 83, 8987–8991 (1986). (10.1073/pnas.83.23.8987) / Proc. Natl Acad. Sci. USA by JE Segall (1986)
  70. Wadhams, G. H. et al. TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. Mol. Microbiol. 46, 1211–1221 (2002). (10.1046/j.1365-2958.2002.03252.x) / Mol. Microbiol. by GH Wadhams (2002)
  71. Weinberg, R. A. & Zusman, D. R. Evidence that the Myxococcus xanthus frz genes are developmentally regulated. J. Bacteriol. 171, 6174–6186 (1989). (10.1128/jb.171.11.6174-6186.1989) / J. Bacteriol. by RA Weinberg (1989)
  72. Jakobsen, J. S. et al. σ54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186, 4361–4368 (2004). (10.1128/JB.186.13.4361-4368.2004) / J. Bacteriol. by JS Jakobsen (2004)
  73. Sun, H., Zusman, D. R. & Shi, W. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10, 1143–1146 (2000). (10.1016/S0960-9822(00)00705-3) / Curr. Biol. by H Sun (2000)
  74. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999). (10.1046/j.1365-2958.1999.01339.x) / Mol. Microbiol. by D Wall (1999)
  75. Arnold, J. W. & Shimkets, L. J. Inhibition of cell–cell interactions in Myxococcus xanthus by congo red. J. Bacteriol. 170, 5765–5770 (1988). (10.1128/jb.170.12.5765-5770.1988) / J. Bacteriol. by JW Arnold (1988)
  76. Bowden, M. G. & Kaplan, H. B. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30, 275–284 (1998). (10.1046/j.1365-2958.1998.01060.x) / Mol. Microbiol. by MG Bowden (1998)
  77. Jahn, E. Beitrage zur Botanischen Protistologie (Gebruder Borntraeger, Leipzig, 1924). / Beitrage zur Botanischen Protistologie by E Jahn (1924)
  78. Wolgemuth, C., Hoiczyk, E., Kaiser, D. & Oster, G. How myxobacteria glide. Curr. Biol. 12, 369–377 (2002). (10.1016/S0960-9822(02)00716-9) / Curr. Biol. by C Wolgemuth (2002)
  79. Sliusarenko, O., Zusman, D. R. & Oster, G. The motors powering A-motility in Myxococcus xanthus are distributed along the cell body. J. Bacteriol. 17 Aug 2007 (doi: 10.1128/JB.00923-07). (10.1128/JB.00923-07) / Journal of Bacteriology by O. Sliusarenko (2007)
  80. Sun, H., Yang, Z. & Shi, W. Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. Proc. Natl Acad. Sci. USA 96, 15178–15183 (1999). (10.1073/pnas.96.26.15178) / Proc. Natl Acad. Sci. USA by H Sun (1999)
  81. Mignot, T. The elusive engine in Myxococcus xanthus gliding motility. Cell. Mol. Life Sci. 25 July 2007 (doi: 10.1007/s00018-007-7176-x). (10.1007/s00018-007-7176-x) / Cellular and Molecular Life Sciences by T. Mignot (2007)
  82. Mignot, T., Shaevitz, J. W., Hartzell, P. L. & Zusman, D. R. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315, 853–856 (2007). (10.1126/science.1137223) / Science by T Mignot (2007)
  83. Graumann, P. Cytoskeletal elements in bacteria. Annu. Rev. Microbiol. (in the press).
  84. Shi, W. & Zusman, D. R. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl Acad. Sci. USA 90, 3378–3382 (1993). (10.1073/pnas.90.8.3378) / Proc. Natl Acad. Sci. USA by W Shi (1993)
  85. Wozniak, M. A., Modzelewska, K., Kwong, L. & Keely, P. J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004). (10.1016/j.bbamcr.2004.04.007) / Biochim. Biophys. Acta by MA Wozniak (2004)
  86. Baum, J., Papenfuss, A. T., Baum, B., Speed, T. P. & Cowman, A. F. Regulation of apicomplexan actin-based motility. Nature Rev. Microbiol. 4, 621–628 (2006). (10.1038/nrmicro1465) / Nature Rev. Microbiol. by J Baum (2006)
  87. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024–1037 (2004). (10.1038/nrm1524) / Nature Rev. Mol. Cell Biol. by GH Wadhams (2004)
  88. Wolanin, P. M. et al. Self-assembly of receptor/signaling complexes in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 103, 14313–14318 (2006). (10.1073/pnas.0606350103) / Proc. Natl Acad. Sci. USA by PM Wolanin (2006)
  89. Welch, M., Oosawa, K., Aizawa, S. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl Acad. Sci. USA 90, 8787–8791 (1993). (10.1073/pnas.90.19.8787) / Proc. Natl Acad. Sci. USA by M Welch (1993)
  90. Okumura, H., Nishiyama, S., Sasaki, A., Homma, M. & Kawagishi, I. Chemotactic adaptation is altered by changes in the carboxy-terminal sequence conserved among the major methyl-accepting chemoreceptors. J. Bacteriol. 180, 1862–1868 (1998). (10.1128/JB.180.7.1862-1868.1998) / J. Bacteriol. by H Okumura (1998)
  91. Ninfa, E. G., Stock, A., Mowbray, S. & Stock, J. Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J. Biol. Chem. 266, 9764–9770 (1991). (10.1016/S0021-9258(18)92886-3) / J. Biol. Chem. by EG Ninfa (1991)
  92. Levit, M. N. & Stock, J. B. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem. 277, 36760–36765 (2002). (10.1074/jbc.M204325200) / J. Biol. Chem. by MN Levit (2002)
  93. Armitage, J. P. & Schmitt, R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti — variations on a theme? Microbiology 143, 3671–3682 (1997). (10.1099/00221287-143-12-3671) / Microbiology by JP Armitage (1997)
  94. Mignot, T., Merlie, J. P. Jr & Zusman, D. R. Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol. Microbiol. 65, 363–372 (2007). (10.1111/j.1365-2958.2007.05789.x) / Mol. Microbiol. by T Mignot (2007)
  95. Gross, L. Antisocial behavior in cooperative bacteria. PLoS Biol. 3, 1847–1848 (2005). / PLoS Biol. by L Gross (2005)
  96. Foster, K. R. Sociobiology: the Phoenix effect. Nature 441, 291–292 (2006). (10.1038/441291a) / Nature by KR Foster (2006)
  97. Zusman, D. R. & O'Connor, K. A. Development in Myxococcus xanthus involves aggregation and sporulation as well as non-aggregation and non-sporulation. Sem. Dev. Biol. 2, 37–45 (1991). / Sem. Dev. Biol. by DR Zusman (1991)
  98. Zhulin, I. B. The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv. Microb. Physiol. 45, 157–198 (2001). (10.1016/S0065-2911(01)45004-1) / Adv. Microb. Physiol. by IB Zhulin (2001)
  99. Alam, M. & Oesterhelt, D. Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176, 459–475 (1984). (10.1016/0022-2836(84)90172-4) / J. Mol. Biol. by M Alam (1984)
  100. Meier, V. M., Muschler, P. & Scharf, B. E. Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti. J. Bacteriol. 189, 1816–1826 (2007). (10.1128/JB.00883-06) / J. Bacteriol. by VM Meier (2007)
  101. Ng, W. V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl Acad. Sci. USA 97, 12176–12181 (2000). (10.1073/pnas.190337797) / Proc. Natl Acad. Sci. USA by WV Ng (2000)
  102. Pittman, M. S., Goodwin, M. & Kelly, D. J. Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology 147, 2493–2504 (2001). (10.1099/00221287-147-9-2493) / Microbiology by MS Pittman (2001)
  103. Croxen, M. A., Sisson, G., Melano, R. & Hoffman, P. S. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J. Bacteriol. 188, 2656–2665 (2006). (10.1128/JB.188.7.2656-2665.2006) / J. Bacteriol. by MA Croxen (2006)
  104. Foynes, S. et al. Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68, 2016–2023 (2000). (10.1128/IAI.68.4.2016-2023.2000) / Infect. Immun. by S Foynes (2000)
  105. Kato, J., Nakamura, T., Kuroda, A. & Ohtake, H. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem. 63, 155–161 (1999). (10.1271/bbb.63.155) / Biosci. Biotechnol. Biochem. by J Kato (1999)
  106. Jiang, Z. Y. & Bauer, C. E. Analysis of a chemotaxis operon from Rhodospirillum centenum. J. Bacteriol. 179, 5712–5719 (1997). (10.1128/jb.179.18.5712-5719.1997) / J. Bacteriol. by ZY Jiang (1997)
  107. Jiang, Z. Y., Gest, H. & Bauer, C. E. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J. Bacteriol. 179, 5720–5727 (1997). (10.1128/jb.179.18.5720-5727.1997) / J. Bacteriol. by ZY Jiang (1997)
  108. Attmannspacher, U., Scharf, B. & Schmitt, R. Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti. Mol. Microbiol. 56, 708–718 (2005). (10.1111/j.1365-2958.2005.04565.x) / Mol. Microbiol. by U Attmannspacher (2005)
  109. Bhaya, D. Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol. Microbiol. 53, 745–754 (2004). (10.1111/j.1365-2958.2004.04160.x) / Mol. Microbiol. by D Bhaya (2004)
Dates
Type When
Created 17 years, 10 months ago (Oct. 8, 2007, 7:23 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:23 a.m.)
Indexed 5 hours, 41 minutes ago (Sept. 3, 2025, 6:22 a.m.)
Issued 17 years, 10 months ago (Nov. 1, 2007)
Published 17 years, 10 months ago (Nov. 1, 2007)
Published Print 17 years, 10 months ago (Nov. 1, 2007)
Funders 0

None

@article{Zusman_2007, title={Chemosensory pathways, motility and development in Myxococcus xanthus}, volume={5}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro1770}, DOI={10.1038/nrmicro1770}, number={11}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Zusman, David R. and Scott, Ansley E. and Yang, Zhaomin and Kirby, John R.}, year={2007}, month=nov, pages={862–872} }