Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Microbiology (297)
Bibliography

Nisole, S., Stoye, J. P., & Saïb, A. (2005). TRIM family proteins: retroviral restriction and antiviral defence. Nature Reviews Microbiology, 3(10), 799–808.

Authors 3
  1. Sébastien Nisole (first)
  2. Jonathan P. Stoye (additional)
  3. Ali Saïb (additional)
References 128 Referenced 601
  1. Isaacs, A. & Burke, D. C. Mode of action of interferon. Nature 182, 1073–1074 (1958). (10.1038/1821073a0) / Nature by A Isaacs (1958)
  2. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997). (10.1038/41131) / Nature by R Medzhitov (1997)
  3. Goff, S. P. Retrovirus restriction factors. Mol. Cell 16, 849–859 (2004). (10.1016/j.molcel.2004.12.001) / Mol. Cell by SP Goff (2004)
  4. Harris, R. S. & Liddament, M. T. Retroviral restriction by APOBEC proteins. Nature Rev. Immunol. 4, 868–877 (2004). (10.1038/nri1489) / Nature Rev. Immunol. by RS Harris (2004)
  5. Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nature Rev. Genet. 6, 206–220 (2005). (10.1038/nrg1555) / Nature Rev. Genet. by O Voinnet (2005)
  6. Gao, G., Guo, X. & Goff, S. P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703–1706 (2002). (10.1126/science.1074276) / Science by G Gao (2002)
  7. Reddy, B. A., Kloc, M. & Etkin, L. The cloning and characterization of a maternally expressed novel zinc finger nuclear phosphoprotein (xnf7) in Xenopus laevis. Dev. Biol. 148, 107–116 (1991). Cloning of the first TRIM. (10.1016/0012-1606(91)90321-S) / Dev. Biol. by BA Reddy (1991)
  8. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001). Pioneering characterization of the TRIM family. (10.1093/emboj/20.9.2140) / EMBO J. by A Reymond (2001)
  9. Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genet. 36, 40–45 (2004). (10.1038/ng1285) / Nature Genet. by T Ota (2004)
  10. Strausberg, R. L. et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl Acad. Sci. USA 99, 16899–16903 (2002). (10.1073/pnas.242603899) / Proc. Natl Acad. Sci. USA by RL Strausberg (2002)
  11. Miyamoto, K. et al. RING finger, B-box, and coiled-coil (RBCC) protein expression in branchial epithelial cells of Japanese eel, Anguilla japonica. Eur. J. Biochem. 269, 6152–6161 (2002). (10.1046/j.1432-1033.2002.03332.x) / Eur. J. Biochem. by K Miyamoto (2002)
  12. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998). (10.1126/science.282.5396.2012)
  13. Saurin, A. J., Borden, K. L., Boddy, M. N. & Freemont, P. S. Does this have a familiar RING? Trends Biochem. Sci. 21, 208–214 (1996). (10.1016/S0968-0004(96)80017-X) / Trends Biochem. Sci. by AJ Saurin (1996)
  14. Lovering, R. et al. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc. Natl Acad. Sci. USA 90, 2112–2116 (1993). Identification of the first RING domain. (10.1073/pnas.90.6.2112) / Proc. Natl Acad. Sci. USA by R Lovering (1993)
  15. Borden, K. L. RING domains: master builders of molecular scaffolds? J. Mol. Biol. 295, 1103–1112 (2000). (10.1006/jmbi.1999.3429) / J. Mol. Biol. by KL Borden (2000)
  16. Freemont, P. S. RING for destruction? Curr. Biol. 10, R84–R87 (2000). (10.1016/S0960-9822(00)00287-6) / Curr. Biol. by PS Freemont (2000)
  17. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000). (10.1016/S0092-8674(00)00077-5) / Cell by CA Joazeiro (2000)
  18. Xu, L. et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5δ. Exp. Cell Res. 288, 84–93 (2003). (10.1016/S0014-4827(03)00187-3) / Exp. Cell Res. by L Xu (2003)
  19. Trockenbacher, A. et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nature Genet. 29, 287–294 (2001). (10.1038/ng762) / Nature Genet. by A Trockenbacher (2001)
  20. Urano, T. et al. Efp targets 14-3-3σ for proteolysis and promotes breast tumour growth. Nature 417, 871–875 (2002). (10.1038/nature00826) / Nature by T Urano (2002)
  21. Horn, E. J. et al. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 25, 157–167 (2004). (10.1093/carcin/bgh003) / Carcinogenesis by EJ Horn (2004)
  22. Vichi, A., Payne, D. M., Pacheco-Rodriguez, G., Moss, J. & Vaughan, M. E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Proc. Natl Acad. Sci. USA 102, 1945–1950 (2005). (10.1073/pnas.0409800102) / Proc. Natl Acad. Sci. USA by A Vichi (2005)
  23. Reddy, B. A., Etkin, L. D. & Freemont, P. S. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem. Sci. 17, 344–345 (1992). Provides the first characterization of a coiled-coil domain. (10.1016/0968-0004(92)90308-V) / Trends Biochem. Sci. by BA Reddy (1992)
  24. Borden, K. L. et al. In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc. Natl Acad. Sci. USA 93, 1601–1606 (1996). (10.1073/pnas.93.4.1601) / Proc. Natl Acad. Sci. USA by KL Borden (1996)
  25. Cao, T., Borden, K. L., Freemont, P. S. & Etkin, L. D. Involvement of the rfp tripartite motif in protein—protein interactions and subcellular distribution. J. Cell Sci. 110, 1563–1571 (1997). (10.1242/jcs.110.14.1563) / J. Cell Sci. by T Cao (1997)
  26. Borden, K. L. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14, 1532–1541 (1995). (10.1002/j.1460-2075.1995.tb07139.x) / EMBO J. by KL Borden (1995)
  27. Peng, H. et al. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein—protein interactions. J. Mol. Biol. 295, 1139–1162 (2000). (10.1006/jmbi.1999.3402) / J. Mol. Biol. by H Peng (2000)
  28. Ponting, C., Schultz, J. & Bork, P. SPRY domains in ryanodine receptors (Ca2+-release channels). Trends Biochem. Sci. 22, 193–194 (1997). The first report to identify SPRY domains. (10.1016/S0968-0004(97)01049-9) / Trends Biochem. Sci. by C Ponting (1997)
  29. Henry, J., Mather, I. H., McDermott, M. F. & Pontarotti, P. B30.2-like domain proteins: update and new insights into a rapidly expanding family of proteins. Mol. Biol. Evol. 15, 1696–1705 (1998). (10.1093/oxfordjournals.molbev.a025896) / Mol. Biol. Evol. by J Henry (1998)
  30. Vernet, C. et al. Evolutionary study of multigenic families mapping close to the human MHC class I region. J. Mol. Evol. 37, 600–612 (1993). (10.1007/BF00182746) / J. Mol. Evol. by C Vernet (1993)
  31. Hilton, D. J. et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl Acad. Sci. USA 95, 114–119 (1998). (10.1073/pnas.95.1.114) / Proc. Natl Acad. Sci. USA by DJ Hilton (1998)
  32. Aasland, R., Gibson, T. J. & Stewart, A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59 (1995). (10.1016/S0968-0004(00)88957-4) / Trends Biochem. Sci. by R Aasland (1995)
  33. Le Douarin, B. et al. A possible involvement of TIF1 α and TIF1 β in the epigenetic control of transcription by nuclear receptors. EMBO J. 15, 6701–6715 (1996). (10.1002/j.1460-2075.1996.tb01060.x) / EMBO J. by B Le Douarin (1996)
  34. Venturini, L. et al. TIF1γ, a novel member of the transcriptional intermediary factor 1 family. Oncogene 18, 1209–1217 (1999). (10.1038/sj.onc.1202655) / Oncogene by L Venturini (1999)
  35. The French FMF Consortium. A candidate gene for familial Mediterranean fever. Nature Genet. 17, 25–31 (1997). (10.1038/ng0997-25)
  36. Quaderi, N. A. et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nature Genet. 17, 285–291 (1997). (10.1038/ng1197-285) / Nature Genet. by NA Quaderi (1997)
  37. Frosk, P. et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am. J. Hum. Genet. 70, 663–672 (2002). (10.1086/339083) / Am. J. Hum. Genet. by P Frosk (2002)
  38. Avela, K. et al. Gene encoding a new RING-B-box-coiled-coil protein is mutated in mulibrey nanism. Nature Genet. 25, 298–301 (2000). (10.1038/77053) / Nature Genet. by K Avela (2000)
  39. de The, H. et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991). (10.1016/0092-8674(91)90113-D) / Cell by H de The (1991)
  40. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66, 663–674 (1991). (10.1016/0092-8674(91)90112-C) / Cell by A Kakizuka (1991)
  41. Goddard, A. D., Borrow, J., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254, 1371–1374 (1991). References 39–41 report the identification of PML as a PML–RARα fusion protein. (10.1126/science.1720570) / Science by AD Goddard (1991)
  42. Takahashi, M., Inaguma, Y., Hiai, H. & Hirose, F. Developmentally regulated expression of a human 'finger'-containing gene encoded by the 5′ half of the ret transforming gene. Mol. Cell Biol. 8, 1853–1856 (1988). (10.1128/MCB.8.4.1853) / Mol. Cell Biol. by M Takahashi (1988)
  43. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995). (10.1002/j.1460-2075.1995.tb07194.x) / EMBO J. by B Le Douarin (1995)
  44. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004). Direct demonstration of the anti-HIV activity of simian TRIM5α. (10.1038/nature02343) / Nature by M Stremlau (2004)
  45. Hatziioannou, T., Perez-Caballero, D., Yang, A., Cowan, S. & Bieniasz, P. D. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α. Proc. Natl Acad. Sci. USA 101, 10774–10779 (2004). (10.1073/pnas.0402361101) / Proc. Natl Acad. Sci. USA by T Hatziioannou (2004)
  46. Keckesova, Z., Ylinen, L. M. & Towers, G. J. The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc. Natl Acad. Sci. USA 101, 10780–10785 (2004). (10.1073/pnas.0402474101) / Proc. Natl Acad. Sci. USA by Z Keckesova (2004)
  47. Perron, M. J. et al. TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl Acad. Sci. USA 101, 11827–11832 (2004). (10.1073/pnas.0403364101) / Proc. Natl Acad. Sci. USA by MJ Perron (2004)
  48. Yap, M. W., Nisole, S., Lynch, C. & Stoye, J. P. Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc. Natl Acad. Sci. USA 101, 10786–10791 (2004). References 45–48 identify TRIM5α as the factor responsible for Ref1 and Lv1 restriction activities. (10.1073/pnas.0402876101) / Proc. Natl Acad. Sci. USA by MW Yap (2004)
  49. Tissot, C. & Mechti, N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J. Biol. Chem. 270, 14891–14898 (1995). (10.1074/jbc.270.25.14891) / J. Biol. Chem. by C Tissot (1995)
  50. Hofmann, T. G. & Will, H. Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ. 10, 1290–1299 (2003). (10.1038/sj.cdd.4401313) / Cell Death Differ. by TG Hofmann (2003)
  51. Kentsis, A. et al. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J. Mol. Biol. 312, 609–623 (2001). (10.1006/jmbi.2001.5003) / J. Mol. Biol. by A Kentsis (2001)
  52. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000). (10.1038/35018127) / Nature by M Pearson (2000)
  53. Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998). (10.1126/science.279.5356.1547) / Science by ZG Wang (1998)
  54. Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature 431, 205–211 (2004). (10.1038/nature02783) / Nature by HK Lin (2004)
  55. Koken, M. H. et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 13, 1073–1083 (1994). (10.1002/j.1460-2075.1994.tb06356.x) / EMBO J. by MH Koken (1994)
  56. Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998). First evidence for the involvement of SUMO in the control of PML localization. (10.1093/emboj/17.1.61) / EMBO J. by S Muller (1998)
  57. Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999). (10.1083/jcb.147.2.221) / J. Cell Biol. by AM Ishov (1999)
  58. Sternsdorf, T., Jensen, K. & Will, H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J. Cell Biol. 139, 1621–1634 (1997). (10.1083/jcb.139.7.1621) / J. Cell Biol. by T Sternsdorf (1997)
  59. Dyck, J. A. et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333–343 (1994). (10.1016/0092-8674(94)90340-9) / Cell by JA Dyck (1994)
  60. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML–RARα in acute promyelocytic leukemia cells. Cell 76, 345–356 (1994). (10.1016/0092-8674(94)90341-7) / Cell by K Weis (1994)
  61. Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de The, H. How acute promyelocytic leukaemia revived arsenic. Nature Rev. Cancer 2, 705–713 (2002). (10.1038/nrc887) / Nature Rev. Cancer by J Zhu (2002)
  62. Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 3978–3983 (1997). (10.1073/pnas.94.8.3978) / Proc. Natl Acad. Sci. USA by J Zhu (1997)
  63. Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor α degradation. J. Exp. Med. 193, 1361–1371 (2001). (10.1084/jem.193.12.1361) / J. Exp. Med. by V Lallemand-Breitenbach (2001)
  64. Boutell, C., Orr, A. & Everett, R. D. PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. J. Virol. 77, 8686–8694 (2003). (10.1128/JVI.77.16.8686-8694.2003) / J. Virol. by C Boutell (2003)
  65. Borden, K. L. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell Biol. 22, 5259–5269 (2002). (10.1128/MCB.22.15.5259-5269.2002) / Mol. Cell Biol. by KL Borden (2002)
  66. Stadler, M. et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565–2573 (1995). / Oncogene by M Stadler (1995)
  67. Chelbi-Alix, M. K. et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia 9, 2027–2033 (1995). / Leukemia by MK Chelbi-Alix (1995)
  68. Lavau, C. et al. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11, 871–876 (1995). / Oncogene by C Lavau (1995)
  69. Katze, M. G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nature Rev. Immunol. 2, 675–687 (2002). (10.1038/nri888) / Nature Rev. Immunol. by MG Katze (2002)
  70. Chelbi-Alix, M. K., Quignon, F., Pelicano, L., Koken, M. H. & de The, H. Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J. Virol. 72, 1043–1051 (1998). First evidence for an antiviral activity of PML. (10.1128/JVI.72.2.1043-1051.1998) / J. Virol. by MK Chelbi-Alix (1998)
  71. Asper, M. et al. Inhibition of different Lassa virus strains by α and γ interferons and comparison with a less pathogenic arenavirus. J. Virol. 78, 3162–3169 (2004). (10.1128/JVI.78.6.3162-3169.2004) / J. Virol. by M Asper (2004)
  72. Turelli, P. et al. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol. Cell 7, 1245–1254 (2001). Important but controversial paper describing the inhibition of HIV by PML. (10.1016/S1097-2765(01)00255-6) / Mol. Cell by P Turelli (2001)
  73. Bell, P., Montaner, L. J. & Maul, G. G. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J. Virol. 75, 7683–7691 (2001). (10.1128/JVI.75.16.7683-7691.2001) / J. Virol. by P Bell (2001)
  74. Berthoux, L. et al. As2O3 enhances retroviral reverse transcription and counteracts Ref1 antiviral activity. J. Virol. 77, 3167–3180 (2003). (10.1128/JVI.77.5.3167-3180.2003) / J. Virol. by L Berthoux (2003)
  75. Regad, T. et al. PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J. 20, 3495–3505 (2001). (10.1093/emboj/20.13.3495) / EMBO J. by T Regad (2001)
  76. Meiering, C. D. & Linial, M. L. The promyelocytic leukemia protein does not mediate foamy virus latency in vitro. J. Virol. 77, 2207–2213 (2003). (10.1128/JVI.77.3.2207-2213.2003) / J. Virol. by CD Meiering (2003)
  77. Borden, K. L., Campbell Dwyer, E. J. & Salvato, M. S. An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J. Virol. 72, 758–766 (1998). (10.1128/JVI.72.1.758-766.1998) / J. Virol. by KL Borden (1998)
  78. Blondel, D. et al. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 21, 7957–7970 (2002). (10.1038/sj.onc.1205931) / Oncogene by D Blondel (2002)
  79. Maul, G. G., Guldner, H. H. & Spivack, J. G. Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J. Gen. Virol. 74, 2679–2690 (1993). Pioneering paper reporting the disruption of NBs by a viral protein. (10.1099/0022-1317-74-12-2679) / J. Gen. Virol. by GG Maul (1993)
  80. Everett, R. D. & Maul, G. G. HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J. 13, 5062–5069 (1994). (10.1002/j.1460-2075.1994.tb06835.x) / EMBO J. by RD Everett (1994)
  81. Chelbi-Alix, M. K. & de The, H. Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18, 935–941 (1999). (10.1038/sj.onc.1202366) / Oncogene by MK Chelbi-Alix (1999)
  82. Muller, S. & Dejean, A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol. 73, 5137–5143 (1999). (10.1128/JVI.73.6.5137-5143.1999) / J. Virol. by S Muller (1999)
  83. Boutell, C., Sadis, S. & Everett, R. D. Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J. Virol. 76, 841–850 (2002). (10.1128/JVI.76.2.841-850.2002) / J. Virol. by C Boutell (2002)
  84. Hagglund, R. & Roizman, B. Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0. Proc. Natl Acad. Sci. USA 99, 7889–7894 (2002). (10.1073/pnas.122246999) / Proc. Natl Acad. Sci. USA by R Hagglund (2002)
  85. Boutell, C. & Everett, R. D. The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and ubiquitinates p53. J. Biol. Chem. 278, 36596–36602 (2003). (10.1074/jbc.M300776200) / J. Biol. Chem. by C Boutell (2003)
  86. Gu, H. & Roizman, B. The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Proc. Natl Acad. Sci. USA 100, 8963–8968 (2003). (10.1073/pnas.1533420100) / Proc. Natl Acad. Sci. USA by H Gu (2003)
  87. Lopez, P., Jacob, R. J. & Roizman, B. Overexpression of promyelocytic leukemia protein precludes the dispersal of ND10 structures and has no effect on accumulation of infectious herpes simplex virus 1 or its proteins. J. Virol. 76, 9355–9367 (2002). (10.1128/JVI.76.18.9355-9367.2002) / J. Virol. by P Lopez (2002)
  88. Chee, A. V., Lopez, P., Pandolfi, P. P. & Roizman, B. Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J. Virol. 77, 7101–7105 (2003). (10.1128/JVI.77.12.7101-7105.2003) / J. Virol. by AV Chee (2003)
  89. Parkinson, J. & Everett, R. D. αherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J. Virol. 74, 10006–10017 (2000). (10.1128/JVI.74.21.10006-10017.2000) / J. Virol. by J Parkinson (2000)
  90. Lilly, F. Fv-2: Identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J. Natl Cancer Inst. 45, 163–169 (1970). / J. Natl Cancer Inst. by F Lilly (1970)
  91. Hartley, J. W., Rowe, W. P. & Huebner, R. J. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J. Virol. 5, 221–225 (1970). (10.1128/JVI.5.2.221-225.1970) / J. Virol. by JW Hartley (1970)
  92. DesGroseillers, L. & Jolicoeur, P. Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J. Virol. 48, 685–696 (1983). (10.1128/JVI.48.3.685-696.1983) / J. Virol. by L DesGroseillers (1983)
  93. Kozak, C. A. & Chakraborti, A. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225, 300–305 (1996). (10.1006/viro.1996.0604) / Virology by CA Kozak (1996)
  94. Stoye, J. P. Fv1, the mouse retrovirus resistance gene. Rev. Sci. Tech. 17, 269–277 (1998). (10.20506/rst.17.1.1080) / Rev. Sci. Tech. by JP Stoye (1998)
  95. Best, S., Le Tissier, P., Towers, G. & Stoye, J. P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382, 826–829 (1996). Cloning of Fv1, the prototype of restriction factors. (10.1038/382826a0) / Nature by S Best (1996)
  96. Cordonnier, A., Casella, J. -F. & Heidmann, T. Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. J. Virol. 69, 5890–5897 (1995). (10.1128/JVI.69.9.5890-5897.1995) / J. Virol. by A Cordonnier (1995)
  97. Goff, S. P. Operating under a Gag order: a block against incoming virus by the Fv1 gene. Cell 86, 691–693 (1996). (10.1016/S0092-8674(00)80141-5) / Cell by SP Goff (1996)
  98. Benit, L. et al. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J. Virol. 71, 5652–5657 (1997). (10.1128/JVI.71.7.5652-5657.1997) / J. Virol. by L Benit (1997)
  99. Towers, G. et al. A conserved mechanism of retrovirus restriction in mammals. Proc. Natl Acad. Sci. USA 97, 12295–12299 (2000). First evidence for the existence of Fv1-like factors in non-murine cells. (10.1073/pnas.200286297) / Proc. Natl Acad. Sci. USA by G Towers (2000)
  100. Besnier, C. et al. Characterization of murine leukemia virus restriction in mammals. J. Virol. 77, 13403–13406 (2003). (10.1128/JVI.77.24.13403-13406.2003) / J. Virol. by C Besnier (2003)
  101. Hofmann, W. et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 73, 10020–10028 (1999). (10.1128/JVI.73.12.10020-10028.1999) / J. Virol. by W Hofmann (1999)
  102. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl Acad. Sci. USA 99, 11920–11925 (2002). (10.1073/pnas.172384599) / Proc. Natl Acad. Sci. USA by C Besnier (2002)
  103. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl Acad. Sci. USA 99, 11914–11919 (2002). (10.1073/pnas.162299499) / Proc. Natl Acad. Sci. USA by S Cowan (2002)
  104. Munk, C., Brandt, S. M., Lucero, G. & Landau, N. R. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc. Natl Acad. Sci. USA 99, 13843–13848 (2002). (10.1073/pnas.212400099) / Proc. Natl Acad. Sci. USA by C Munk (2002)
  105. Yap, M. W., Nisole, S. & Stoye, J. P. A single amino acid change in the SPRY domain of human Trim5α leads to HIV-1 restriction. Curr. Biol. 15, 73–78 (2005). A rigorous mapping of restriction determinants within TRIM5α. (10.1016/j.cub.2004.12.042) / Curr. Biol. by MW Yap (2005)
  106. Stremlau, M., Perron, M., Welikala, S. & Sodroski, J. Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction. J. Virol. 79, 3139–3145 (2005). (10.1128/JVI.79.5.3139-3145.2005) / J. Virol. by M Stremlau (2005)
  107. Haran-Ghera, N., Peled, A., Brightman, B. K. & Fan, H. Lymphomagenesis in AKR. Fv-1b congenic mice. Cancer Res. 53, 3433–3438 (1993). / Cancer Res. by N Haran-Ghera (1993)
  108. Sawyer, S. L., Wu, L. I., Emerman, M. & Malik, H. S. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. Proc. Natl Acad. Sci. USA 102, 2832–2837 (2005). (10.1073/pnas.0409853102) / Proc. Natl Acad. Sci. USA by SL Sawyer (2005)
  109. Song, B. et al. The B30.2(SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates. J. Virol. 79, 6111–6121 (2005). (10.1128/JVI.79.10.6111-6121.2005) / J. Virol. by B Song (2005)
  110. Jolicoeur, P. The Fv-1 gene of the mouse and its control of murine leukemia virus replication. Curr. Top. Microbiol. Immunol. 86, 67–122 (1979). (10.1007/978-3-642-67341-2_3) / Curr. Top. Microbiol. Immunol. by P Jolicoeur (1979)
  111. Duran-Troise, G., Bassin, R. H., Rein, A. & Gerwin, B. I. Loss of Fv-1 restriction in Balb/3T3 cells following infection with a single N tropic murine leukemia particle. Cell 10, 479–488 (1977). (10.1016/0092-8674(77)90035-6) / Cell by G Duran-Troise (1977)
  112. Yap, M. W. & Stoye, J. P. Intracellular localisation of Fv1. Virology 307, 76–89 (2003). (10.1016/S0042-6822(02)00053-3) / Virology by MW Yap (2003)
  113. Nisole, S., Lynch, C., Stoye, J. P. & Yap, M. W. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc. Natl Acad. Sci. USA 101, 13324–13328 (2004). (10.1073/pnas.0404640101) / Proc. Natl Acad. Sci. USA by S Nisole (2004)
  114. Sayah, D. M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004). (10.1038/nature02777) / Nature by DM Sayah (2004)
  115. Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993). (10.1016/0092-8674(93)90637-6) / Cell by J Luban (1993)
  116. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996). (10.1016/S0092-8674(00)81823-1) / Cell by TR Gamble (1996)
  117. Towers, G. J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nature Med. 9, 1138–1143 (2003). (10.1038/nm910) / Nature Med. by GJ Towers (2003)
  118. Forshey, B. M., von Schwedler, U., Sundquist, W. I. & Aiken, S. C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677 (2002). (10.1128/JVI.76.11.5667-5677.2002) / J. Virol. by BM Forshey (2002)
  119. Dodding, M. P., Bock, M., Yap, M. W. & Stoye, J. P. Capsid processing requirements for abrogation of fv1 and ref1 restriction. J. Virol. 79, 10571–10577 (2005). (10.1128/JVI.79.16.10571-10577.2005) / J. Virol. by MP Dodding (2005)
  120. Mortuza, G. B. et al. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431, 481–485 (2004). (10.1038/nature02915) / Nature by GB Mortuza (2004)
  121. Berthoux, L., Sebastian, S., Sokolskaja, E. & Luban, J. Lv1 inhibition of human immunodeficiency virus type 1 is counteracted by factors that stimulate synthesis or nuclear translocation of viral cDNA. J. Virol. 78, 11739–11750 (2004). (10.1128/JVI.78.21.11739-11750.2004) / J. Virol. by L Berthoux (2004)
  122. Nisole, S. & Saib, A. Early steps of retrovirus replicative cycle. Retrovirology 1, 9 (2004). (10.1186/1742-4690-1-9) / Retrovirology by S Nisole (2004)
  123. Fridell, R. A., Harding, L. S., Bogerd, H. P. & Cullen, B. R. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 209, 347–357 (1995). (10.1006/viro.1995.1266) / Virology by RA Fridell (1995)
  124. Geiss, G. K. et al. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl Acad. Sci. USA 99, 10736–10741 (2002). (10.1073/pnas.112338099) / Proc. Natl Acad. Sci. USA by GK Geiss (2002)
  125. Wang, Y. et al. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1. Biochem. Biophys. Res. Commun. 323, 9–16 (2004). (10.1016/j.bbrc.2004.08.048) / Biochem. Biophys. Res. Commun. by Y Wang (2004)
  126. Bjorndal, A. S., Szekely, L. & Elgh, F. Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML) protein in cultured cells. BMC Microbiol. 3, 6 (2003). (10.1186/1471-2180-3-6) / BMC Microbiol. by AS Bjorndal (2003)
  127. Bonilla, W. V. et al. Effects of promyelocytic leukemia protein on virus–host balance. J. Virol. 76, 3810–3818 (2002). (10.1128/JVI.76.8.3810-3818.2002) / J. Virol. by WV Bonilla (2002)
  128. Djavani, M. et al. Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J. Virol. 75, 6204–6208 (2001). (10.1128/JVI.75.13.6204-6208.2001) / J. Virol. by M Djavani (2001)
Dates
Type When
Created 19 years, 11 months ago (Sept. 20, 2005, 9:42 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:18 a.m.)
Indexed 16 hours, 56 minutes ago (Aug. 29, 2025, 6:41 a.m.)
Issued 19 years, 11 months ago (Sept. 9, 2005)
Published 19 years, 11 months ago (Sept. 9, 2005)
Published Online 19 years, 11 months ago (Sept. 9, 2005)
Published Print 19 years, 10 months ago (Oct. 1, 2005)
Funders 0

None

@article{Nisole_2005, title={TRIM family proteins: retroviral restriction and antiviral defence}, volume={3}, ISSN={1740-1534}, url={http://dx.doi.org/10.1038/nrmicro1248}, DOI={10.1038/nrmicro1248}, number={10}, journal={Nature Reviews Microbiology}, publisher={Springer Science and Business Media LLC}, author={Nisole, Sébastien and Stoye, Jonathan P. and Saïb, Ali}, year={2005}, month=sep, pages={799–808} }